JVM相关 - 深入理解 System.gc()
本文基于 Java 17-ea,但是相关设计在 Java 11 之后是大致一样的
我们经常在面试中询问 System.gc()
究竟会不会立刻触发 Full GC,网上也有很多人给出了答案,但是这些答案都有些过时了。本文基于最新的 Java 的下一个即将发布的 LTS 版本 Java 17(ea)的源代码,深入解析 System.gc() 背后的故事。
为什么需要System.gc()
1. 使用并管理堆外内存的框架,需要 Full GC 的机制触发堆外内存回收
JVM 的内存,不止堆内存,还有其他很多块,通过 Native Memory Tracking 可以看到:
Native Memory Tracking:
Total: reserved=6308603KB, committed=4822083KB
- Java Heap (reserved=4194304KB, committed=4194304KB)
(mmap: reserved=4194304KB, committed=4194304KB)
- Class (reserved=1161041KB, committed=126673KB)
(classes #21662)
( instance classes #20542, array classes #1120)
(malloc=3921KB #64030)
(mmap: reserved=1157120KB, committed=122752KB)
( Metadata: )
( reserved=108544KB, committed=107520KB)
( used=105411KB)
( free=2109KB)
( waste=0KB =0.00%)
( Class space:)
( reserved=1048576KB, committed=15232KB)
( used=13918KB)
( free=1314KB)
( waste=0KB =0.00%)
- Thread (reserved=355251KB, committed=86023KB)
(thread #673)
(stack: reserved=353372KB, committed=84144KB)
(malloc=1090KB #4039)
(arena=789KB #1344)
- Code (reserved=252395KB, committed=69471KB)
(malloc=4707KB #17917)
(mmap: reserved=247688KB, committed=64764KB)
- GC (reserved=199635KB, committed=199635KB)
(malloc=11079KB #29639)
(mmap: reserved=188556KB, committed=188556KB)
- Compiler (reserved=2605KB, committed=2605KB)
(malloc=2474KB #2357)
(arena=131KB #5)
- Internal (reserved=3643KB, committed=3643KB)
(malloc=3611KB #8683)
(mmap: reserved=32KB, committed=32KB)
- Other (reserved=67891KB, committed=67891KB)
(malloc=67891KB #2859)
- Symbol (reserved=26220KB, committed=26220KB)
(malloc=22664KB #292684)
(arena=3556KB #1)
- Native Memory Tracking (reserved=7616KB, committed=7616KB)
(malloc=585KB #8238)
(tracking overhead=7031KB)
- Arena Chunk (reserved=10911KB, committed=10911KB)
(malloc=10911KB)
- Tracing (reserved=25937KB, committed=25937KB)
(malloc=25937KB #8666)
- Logging (reserved=5KB, committed=5KB)
(malloc=5KB #196)
- Arguments (reserved=18KB, committed=18KB)
(malloc=18KB #486)
- Module (reserved=532KB, committed=532KB)
(malloc=532KB #3579)
- Synchronizer (reserved=591KB, committed=591KB)
(malloc=591KB #4777)
- Safepoint (reserved=8KB, committed=8KB)
(mmap: reserved=8KB, committed=8KB)
- Java Heap: 堆内存,即
-Xmx
限制的最大堆大小的内存。 - Class:加载的类与方法信息,其实就是 metaspace,包含两部分: 一是 metadata,被
-XX:MaxMetaspaceSize
限制最大大小,另外是 class space,被-XX:CompressedClassSpaceSize
限制最大大小 - Thread:线程与线程栈占用内存,每个线程栈占用大小受
-Xss
限制,但是总大小没有限制。 - Code:JIT 即时编译后(C1 C2 编译器优化)的代码占用内存,受
-XX:ReservedCodeCacheSize
限制 - GC:垃圾回收占用内存,例如垃圾回收需要的 CardTable,标记数,区域划分记录,还有标记 GC Root 等等,都需要内存。这个不受限制,一般不会很大的。
- Compiler:C1 C2 编译器本身的代码和标记占用的内存,这个不受限制,一般不会很大的
- Internal:命令行解析,JVMTI 使用的内存,这个不受限制,一般不会很大的
- Symbol: 常量池占用的大小,字符串常量池受
-XX:StringTableSize
个数限制,总内存大小不受限制 - Native Memory Tracking:内存采集本身占用的内存大小,如果没有打开采集(那就看不到这个了,哈哈),就不会占用,这个不受限制,一般不会很大的
- Arena Chunk:所有通过 arena 方式分配的内存,这个不受限制,一般不会很大的
- Tracing:所有采集占用的内存,如果开启了 JFR 则主要是 JFR 占用的内存。这个不受限制,一般不会很大的
- Logging,Arguments,Module,Synchronizer,Safepoint,Other,这些一般我们不会关心。
除了 Native Memory Tracking 记录的内存使用,还有两种内存 Native Memory Tracking 没有记录,那就是:
- Direct Buffer:直接内存
- MMap Buffer:文件映射内存
针对除了堆内存以外,其他的内存,有些也是需要 GC 的。例如:MetaSpace,CodeCache,Direct Buffer,MMap Buffer 等等。早期在 Java 8 之前的 JVM,对于这些内存回收的机制并不完善,很多情况下都需要 FullGC 扫描整个堆才能确定这些区域中哪些内存可以回收。
有一些框架,大量使用并管理了这些堆外空间。例如 netty 使用了 Direct Buffer,Kafka 和 RocketMQ 使用了 Direct Buffer 和 MMap Buffer。他们都是提前从系统申请好一块内存,之后管理起来并使用。在空间不足时,继续向系统申请,并且也会有缩容。例如 netty,在使用的 Direct Buffer 达到-XX:MaxDirectMemorySize
的限制之后,则会先尝试将不可达的Reference对象加入Reference链表中,依赖Reference的内部守护线程触发可以被回收DirectByteBuffer关联的Cleaner的run()方法。如果内存还是不足, 则执行System.gc()
,期望触发full gc
,来回收堆内存中的DirectByteBuffer
对象来触发堆外内存回收,如果还是超过限制,则抛出java.lang.OutOfMemoryError
.
2. 使用了 WeakReference, SoftReference 的程序,需要相应的 GC 回收。
对于 WeakReference,只要发生 GC,无论是 Young GC 还是 FullGC 就会被回收。SoftReference 只有在 FullGC 的时候才会被回收。当我们程序想主动对于这些引用进行回收的时候,需要能触发 GC 的方法,这就用到了System.gc()
。
3. 测试,学习 JVM 机制的时候
有些时候,我们为了测试,学习 JVM 的某些机制,需要让 JVM 做一次 GC 之后开始,这也会用到System.gc()
。但是其实有更好的方法,后面你会看到。
System.gc()
背后的原理
System.gc()
实际上调用的是RunTime.getRunTime().gc()
:
public static void gc() {
Runtime.getRuntime().gc();
}
这个方法是一个 native 方法:
public native void gc();
对应 JVM 源码:
JVM_ENTRY_NO_ENV(void, JVM_GC(void))
JVMWrapper("JVM_GC");
//如果没有将JVM启动参数 DisableExplicitGC 设置为 false,则执行 GC,GC 原因是 System.gc 触发,对应 GCCause::_java_lang_system_gc
if (!DisableExplicitGC) {
Universe::heap()->collect(GCCause::_java_lang_system_gc);
}
JVM_END
首先,根据 DisableExplicitGC 这个 JVM 启动参数的状态,确定是否会 GC,如果需要 GC,不同 GC 会有不同的处理。
1. G1 GC 的处理
如果是 System.gc()
触发的 GC,G1 GC 会根据 ExplicitGCInvokesConcurrent 这个 JVM 参数决定是默认 GC (轻量 GC,YoungGC)还是 FullGC。
参考代码g1CollectedHeap.cpp
:
//是否应该并行 GC,也就是较为轻量的 GC,对于 GCCause::_java_lang_system_gc,这里就是判断 ExplicitGCInvokesConcurrent 这个 JVM 是否为 true
if (should_do_concurrent_full_gc(cause)) {
return try_collect_concurrently(cause,
gc_count_before,
old_marking_started_before);
}// 省略其他这里我们不关心的判断分支
else {
//否则进入 full GC
VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
VMThread::execute(&op);
return op.gc_succeeded();
}
2. ZGC 的处理
直接不处理,不支持通过 System.gc()
触发 GC。
参考源码:zDriver.cpp
void ZDriver::collect(GCCause::Cause cause) {
switch (cause) {
//注意这里的 _wb 开头的 GC 原因,这代表是 WhiteBox 触发的,后面我们会用到,这里先记一下
case GCCause::_wb_young_gc:
case GCCause::_wb_conc_mark:
case GCCause::_wb_full_gc:
case GCCause::_dcmd_gc_run:
case GCCause::_java_lang_system_gc:
case GCCause::_full_gc_alot:
case GCCause::_scavenge_alot:
case GCCause::_jvmti_force_gc:
case GCCause::_metadata_GC_clear_soft_refs:
// Start synchronous GC
_gc_cycle_port.send_sync(cause);
break;
case GCCause::_z_timer:
case GCCause::_z_warmup:
case GCCause::_z_allocation_rate:
case GCCause::_z_allocation_stall:
case GCCause::_z_proactive:
case GCCause::_z_high_usage:
case GCCause::_metadata_GC_threshold:
// Start asynchronous GC
_gc_cycle_port.send_async(cause);
break;
case GCCause::_gc_locker:
// Restart VM operation previously blocked by the GC locker
_gc_locker_port.signal();
break;
case GCCause::_wb_breakpoint:
ZBreakpoint::start_gc();
_gc_cycle_port.send_async(cause);
break;
//对于其他原因,不触发GC,GCCause::_java_lang_system_gc 会走到这里
default:
// Other causes not supported
fatal("Unsupported GC cause (%s)", GCCause::to_string(cause));
break;
}
}
3. Shenandoah GC 的处理
Shenandoah 的处理和 G1 GC 的类似,先判断是不是用户明确触发的 GC,然后通过 DisableExplicitGC 这个 JVM 参数判断是否可以 GC(其实这个是多余的,可以去掉,因为外层JVM_ENTRY_NO_ENV(void, JVM_GC(void))
已经处理这个状态位了)。如果可以,则请求 GC,阻塞等待 GC 请求被处理。然后根据 ExplicitGCInvokesConcurrent 这个 JVM 参数决定是默认 GC (轻量并行 GC,YoungGC)还是 FullGC。
参考源码shenandoahControlThread.cpp
void ShenandoahControlThread::request_gc(GCCause::Cause cause) {
assert(GCCause::is_user_requested_gc(cause) ||
GCCause::is_serviceability_requested_gc(cause) ||
cause == GCCause::_metadata_GC_clear_soft_refs ||
cause == GCCause::_full_gc_alot ||
cause == GCCause::_wb_full_gc ||
cause == GCCause::_scavenge_alot,
"only requested GCs here");
//如果是显式GC(即如果是GCCause::_java_lang_system_gc,GCCause::_dcmd_gc_run,GCCause::_jvmti_force_gc,GCCause::_heap_inspection,GCCause::_heap_dump中的任何一个)
if (is_explicit_gc(cause)) {
//如果没有关闭显式GC,也就是 DisableExplicitGC 为 false
if (!DisableExplicitGC) {
//请求 GC
handle_requested_gc(cause);
}
} else {
handle_requested_gc(cause);
}
}
请求 GC 的代码流程是:
void ShenandoahControlThread::handle_requested_gc(GCCause::Cause cause) {
MonitorLocker ml(&_gc_waiters_lock);
//获取当前全局 GC id
size_t current_gc_id = get_gc_id();
//因为要进行 GC ,所以将id + 1
size_t required_gc_id = current_gc_id + 1;
//直到当前全局 GC id + 1 为止,代表 GC 执行了
while (current_gc_id < required_gc_id) {
//设置 gc 状态位,会有其他线程扫描执行 gc
_gc_requested.set();
//记录 gc 原因,根据不同原因有不同的处理策略,我们这里是 GCCause::_java_lang_system_gc
_requested_gc_cause = cause;
//等待 gc 锁对象 notify,代表 gc 被执行并完成
ml.wait();
current_gc_id = get_gc_id();
}
}
对于GCCause::_java_lang_system_gc
,GC 的执行流程大概是:
bool explicit_gc_requested = _gc_requested.is_set() && is_explicit_gc(_requested_gc_cause);
//省略一些代码
else if (explicit_gc_requested) {
cause = _requested_gc_cause;
log_info(gc)("Trigger: Explicit GC request (%s)", GCCause::to_string(cause));
heuristics->record_requested_gc();
// 如果 JVM 参数 ExplicitGCInvokesConcurrent 为 true,则走默认轻量 GC
if (ExplicitGCInvokesConcurrent) {
policy->record_explicit_to_concurrent();
mode = default_mode;
// Unload and clean up everything
heap->set_unload_classes(heuristics->can_unload_classes());
} else {
//否则,执行 FullGC
policy->record_explicit_to_full();
mode = stw_full;
}
}
System.gc()
相关的 JVM 参数
1. DisableExplicitGC
说明:是否禁用显式 GC,默认是不禁用的。对于 Shenandoah GC,显式 GC 包括:GCCause::_java_lang_system_gc
,GCCause::_dcmd_gc_run
,GCCause::_jvmti_force_gc
,GCCause::_heap_inspection
,GCCause::_heap_dump
,对于其他 GC,仅仅限制GCCause::_java_lang_system_gc
默认:false
举例:如果想禁用显式 GC:-XX:+DisableExplicitGC
2. ExplicitGCInvokesConcurrent
说明:对于显式 GC,是执行轻量并行 GC (YoungGC)还是 FullGC,如果为 true 则是执行轻量并行 GC (YoungGC),false 则是执行 FullGC
默认:false
举例:启用的话指定:-XX:+ExplicitGCInvokesConcurrent
其实,在设计上有人提出(参考链接)想将 ExplicitGCInvokesConcurrent 改为 true。但是目前并不是所有的 GC 都可以在轻量并行 GC 对 Java 所有内存区域进行回收,有些时候必须通过 FullGC。所以,目前这个参数还是默认为 false
3. 已过期的 ExplicitGCInvokesConcurrentAndUnloads
和使用 ClassUnloadingWithConcurrentMark
替代
如果显式 GC采用轻量并行 GC,那么无法执行 Class Unloading(类卸载),如果启用了类卸载功能,可能会有异常。所以通过这个状态位来标记在显式 GC时,即使采用轻量并行 GC,也要扫描进行类卸载。
ExplicitGCInvokesConcurrentAndUnloads
目前已经过期了,用ClassUnloadingWithConcurrentMark
替代
如何灵活可控的主动触发各种 GC?
答案是通过 WhiteBox API。但是这个不要在生产上面执行,仅仅用来测试 JVM 还有学习 JVM 使用。WhiteBox API 是 HotSpot VM 自带的白盒测试工具,将内部的很多核心机制的 API 暴露出来,用于白盒测试 JVM,压测 JVM 特性,以及辅助学习理解 JVM 并调优参数。WhiteBox API 是 Java 7 引入的,目前 Java 8 LTS 以及 Java 11 LTS(其实是 Java 9+ 以后的所有版本,这里只关心 LTS 版本,Java 9 引入了模块化所以 WhiteBox API 有所变化)都是有的。但是默认这个 API 并没有编译在 JDK 之中,但是他的实现是编译在了 JDK 里面了。所以如果想用这个 API,需要用户自己编译需要的 API,并加入 Java 的 BootClassPath 并启用 WhiteBox API。下面我们来用 WhiteBox API 来主动触发各种 GC。
1. 编译 WhiteBox API
将https://github.com/openjdk/jdk/tree/master/test/lib
路径下的sun
目录取出,编译成一个 jar 包,名字假设是 whitebox.jar
2. 编写测试程序
将 whitebox.jar
添加到你的项目依赖,之后写代码
public static void main(String[] args) throws Exception {
WhiteBox whiteBox = WhiteBox.getWhiteBox();
//执行young GC
whiteBox.youngGC();
System.out.println("---------------------------------");
whiteBox.fullGC();
//执行full GC
whiteBox.fullGC();
//保持进程不退出,保证日志打印完整
Thread.currentThread().join();
}
3. 启动程序查看效果
使用启动参数 -Xbootclasspath/a:/home/project/whitebox.jar -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI -Xlog:gc
启动程序。其中前三个 Flag 表示启用 WhiteBox API,最后一个表示打印 GC info 级别的日志到控制台。
我的输出:
[0.036s][info][gc] Using G1
[0.048s][info][gc,init] Version: 17-internal+0-adhoc.Administrator.jdk (fastdebug)
[0.048s][info][gc,init] CPUs: 16 total, 16 available
[0.048s][info][gc,init] Memory: 16304M
[0.048s][info][gc,init] Large Page Support: Disabled
[0.048s][info][gc,init] NUMA Support: Disabled
[0.048s][info][gc,init] Compressed Oops: Enabled (32-bit)
[0.048s][info][gc,init] Heap Region Size: 1M
[0.048s][info][gc,init] Heap Min Capacity: 512M
[0.048s][info][gc,init] Heap Initial Capacity: 512M
[0.048s][info][gc,init] Heap Max Capacity: 512M
[0.048s][info][gc,init] Pre-touch: Disabled
[0.048s][info][gc,init] Parallel Workers: 13
[0.048s][info][gc,init] Concurrent Workers: 3
[0.048s][info][gc,init] Concurrent Refinement Workers: 13
[0.048s][info][gc,init] Periodic GC: Disabled
[0.049s][info][gc,metaspace] CDS disabled.
[0.049s][info][gc,metaspace] Compressed class space mapped at: 0x0000000100000000-0x0000000140000000, reserved size: 1073741824
[0.049s][info][gc,metaspace] Narrow klass base: 0x0000000000000000, Narrow klass shift: 3, Narrow klass range: 0x140000000
[1.081s][info][gc,start ] GC(0) Pause Young (Normal) (WhiteBox Initiated Young GC)
[1.082s][info][gc,task ] GC(0) Using 12 workers of 13 for evacuation
[1.089s][info][gc,phases ] GC(0) Pre Evacuate Collection Set: 0.5ms
[1.089s][info][gc,phases ] GC(0) Merge Heap Roots: 0.1ms
[1.089s][info][gc,phases ] GC(0) Evacuate Collection Set: 3.4ms
[1.089s][info][gc,phases ] GC(0) Post Evacuate Collection Set: 1.6ms
[1.089s][info][gc,phases ] GC(0) Other: 1.3ms
[1.089s][info][gc,heap ] GC(0) Eden regions: 8->0(23)
[1.089s][info][gc,heap ] GC(0) Survivor regions: 0->2(4)
[1.089s][info][gc,heap ] GC(0) Old regions: 0->0
[1.089s][info][gc,heap ] GC(0) Archive regions: 0->0
[1.089s][info][gc,heap ] GC(0) Humongous regions: 0->0
[1.089s][info][gc,metaspace] GC(0) Metaspace: 6891K(7104K)->6891K(7104K) NonClass: 6320K(6400K)->6320K(6400K) Class: 571K(704K)->571K(704K)
[1.089s][info][gc ] GC(0) Pause Young (Normal) (WhiteBox Initiated Young GC) 7M->1M(512M) 7.864ms
[1.089s][info][gc,cpu ] GC(0) User=0.00s Sys=0.00s Real=0.01s
---------------------------------
[1.091s][info][gc,task ] GC(1) Using 12 workers of 13 for full compaction
[1.108s][info][gc,start ] GC(1) Pause Full (WhiteBox Initiated Full GC)
[1.108s][info][gc,phases,start] GC(1) Phase 1: Mark live objects
[1.117s][info][gc,phases ] GC(1) Phase 1: Mark live objects 8.409ms
[1.117s][info][gc,phases,start] GC(1) Phase 2: Prepare for compaction
[1.120s][info][gc,phases ] GC(1) Phase 2: Prepare for compaction 3.031ms
[1.120s][info][gc,phases,start] GC(1) Phase 3: Adjust pointers
[1.126s][info][gc,phases ] GC(1) Phase 3: Adjust pointers 5.806ms
[1.126s][info][gc,phases,start] GC(1) Phase 4: Compact heap
[1.190s][info][gc,phases ] GC(1) Phase 4: Compact heap 63.812ms
[1.193s][info][gc,heap ] GC(1) Eden regions: 1->0(25)
[1.193s][info][gc,heap ] GC(1) Survivor regions: 2->0(4)
[1.193s][info][gc,heap ] GC(1) Old regions: 0->3
[1.193s][info][gc,heap ] GC(1) Archive regions: 0->0
[1.193s][info][gc,heap ] GC(1) Humongous regions: 0->0
[1.193s][info][gc,metaspace ] GC(1) Metaspace: 6895K(7104K)->6895K(7104K) NonClass: 6323K(6400K)->6323K(6400K) Class: 571K(704K)->571K(704K)
[1.193s][info][gc ] GC(1) Pause Full (WhiteBox Initiated Full GC) 1M->0M(512M) 84.846ms
[1.202s][info][gc,cpu ] GC(1) User=0.19s Sys=0.63s Real=0.11s
微信搜索“我的编程喵”关注公众号,每日一刷,轻松提升技术,斩获各种offer:
JVM相关 - 深入理解 System.gc()的更多相关文章
- Java垃圾回收System.gc()的理解
System.gc()无法保证GC一定执行 在默认情况下,通过System.gc()或者Runtime.getRuntime().gc()的调用,会显式触发Full GC,同时对老年代和新生代进行回收 ...
- JVM诊断及工具笔记(2)使用arthas定位哪里执行了System#gc()
笔者是汽车之家实时计算平台的一名小伙伴.负责flink平台,数据湖及kafka平台的设计与开发.平时擅长做平台设计,定位及解决各种疑难杂症.第二篇文章,讲的点依旧很小,但是这次图多!!! 在这里感谢支 ...
- 3.1日 重温JVM相关信息
1.JDK.JRE.JVM的关系: JDK是java开发的必备工具箱,JDK其中有一部分是JRE,JRE是JAVA运行环境,JVM则是JRE最核心的部分. 2.JVM的组成: JVM由4大部分组成:C ...
- System.gc()和-XX:+DisableExplicitGC启动参数,以及DirectByteBuffer的内存释放
首先我们修改下JVM的启动参数,重新运行之前博客中的代码.JVM启动参数和测试代码如下: -verbose:gc -XX:+PrintGCDetails -XX:+DisableExplicitGC ...
- 你的JVM还好吗?GC初步诊断
你的JVM还好吗?GC初步诊断 阿飞的博客 JVM的GC机制绝对是很多程序员的福音,它让Java程序员省去了自己回收垃圾的烦恼.从而可以把大部分时间专注业务身上,大大提高了业务开发速度,让产品 ...
- JVM相关问答
大部分内容来源网络,整理一下,留个底. 问:堆和栈有什么区别? 答:堆是存放对象的,但是对象内的临时变量是存在栈内存中,如例子中的methodVar是在运行期存放到栈中的. 栈是跟随线程的,有线程就有 ...
- 【转】深入理解Major GC, Full GC, CMS
声明:本文转自http://blog.csdn.net/iter_zc/article/details/41825395,转载务必声明. 很多人都分不清Major GC, Full GC的概念,事实上 ...
- JVM初探- 内存分配、GC原理与垃圾收集器
JVM初探- 内存分配.GC原理与垃圾收集器 标签 : JVM JVM内存的分配与回收大致可分为如下4个步骤: 何时分配 -> 怎样分配 -> 何时回收 -> 怎样回收. 除了在概念 ...
- 深入理解Major GC, Full GC, CMS
很多人都分不清Major GC, Full GC的概念,事实上我查了下资料,也没有查到非常精确的Major GC和Full GC的概念定义.分不清这两个概念可能就会对这个问题疑惑:Full GC会引起 ...
随机推荐
- 年度账单h5 移动端兼容问题以及优化建议(vue)
定时器 vue实例中定义timer多余,创建的定时器代码和销毁定时器的代码没有放在一起,通常很容易忘记去清理这个定时器,不容易维护:建议使用this.$once('hook:beforeDestory ...
- Codeforces Round #613 (Div. 2) C. Fadi and LCM(LCM & GCD)
题意: LCM(a, b) = X,求 max(a, b) 的最小值. 思路: a, b 只可能存在于 X 的因子中,枚举即可. #include <bits/stdc++.h> usin ...
- BZOJ2555 SubString【SAM + Link Cut Tree】
BZOJ2555. SubString 要求在线询问一个串在原串中出现的次数,并且可以在原串末尾添加字符串 如果没有修改的话,考虑建出\(parent\)树之后统计每个\(endpos\)节点的\(r ...
- P1714 切蛋糕 单调队列
题目: 题目描述 今天是小Z的生日,同学们为他带来了一块蛋糕.这块蛋糕是一个长方体,被用不同色彩分成了N个相同的小块,每小块都有对应的幸运值. 小Z作为寿星,自然希望吃到的第一块蛋糕的幸运值总和最大, ...
- 仿ATM程序软件
一.目标: ATM仿真软件 1 系统的基本功能 ATM的管理系统其基本功能如下:密码验证机制:吞锁卡机制:存取款功能:账户查询功能:转账功能等. 要求 要能提供以下几个基本功能: (1)系统内的相关信 ...
- 树状数组 && 板子
本文树状数组讲解转载于:https://www.cnblogs.com/xenny/p/9739600.html 本文新加内容为模板代码部分 1.什么是树状数组? 顾名思义,就是用数组来模拟树形结构呗 ...
- windows创建p12格式的ios开发证书的流程
现在做ios开发,原生的开发已经不是第一选择,现在有很多不同的H5开发框架,在性能上都不输原生开发,而UI方便却能做得比原生更炫,比如CSS得灵活度肯定是比原生开发出来得应用更灵活的. 我们在开发IO ...
- 牛年 dotnet云原生技术趋势
首先祝大家:新年快乐,牛年大吉,牛年发发发! 2020年的春节,新冠疫情使得全球业务停滞不前,那时候,没有人知道会发生什么,因此会议被取消,合同被搁置,项目被推迟,一切似乎都停止了.但是我们却见证了I ...
- mybatis(三)配置mapper.xml 的基本操作
参考:https://www.cnblogs.com/wuzhenzhao/p/11101555.html XML 映射文件 本文参考mybatis中文官网进行学习总结:http://www.myba ...
- Makefile 赋值 函数定义 等小知识点
1.赋值 == 到用的时候实际才去赋值:= 立刻赋值?= 未赋值才赋值+= 2.多层变量 多层变量引用(各种复杂组合...)a =bb= cc= dd =1$($($($(a)))) 最终等于1 3. ...