题目内容

洛谷链接

给出一个\(n\)个节点,\(m\)条边的无向图和两个节点\(s\)和\(t\),问这两个节点的路径中有几个点必须经过。

输入格式

第一行是\(n\)和\(m\)。

接下来\(m\)行,给出两个数表示这两个节点之间存在一条边。

接下来一行一个整数\(Q\),表示询问个数。

接下来\(Q\)行,每行两个整数\(s\)和\(t\)(\(s\not= t\))。

数据范围

\(0<n\le 10000,0<m\le 100000,0<Q\le 10000,0<s,t\le m\)

输出格式

对于每个询问,输出一行表示答案

样例输入

5 6

1 2

1 3

2 3

3 4

4 5

3 5

2

2 3

2 4

0 0

样例输出

0

1

思路

这个题问的就是\(s\)到\(t\)路径上割点的个数。

点双缩点,可以知道,每条边仅在一个联通块中,把割点和它相邻的联通块建边,从而构造棵树。

询问\(s\)边和\(t\)边,需要求它们分别属于哪个连通块。所以问题转化成了一棵树中,有些点已标记为割点,询问两个非割点之间路径上有多少个割点。

因此选择一个点作为树根,求出每个点到树根路径上有多少个割点,然后对于询问的两个点求一次LCA即可。

代码

#include<cstdio>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn=10000+10;
const int maxm=100000+10; struct Edge{
int u,to,next,vis,id;
}edge[maxm<<1]; int head[maxn<<1],dfn[maxn<<1],low[maxn],st[maxm],iscut[maxn],subnet[maxn],bian[maxm];
int cnt,time,top,btot;
vector<int> belong[maxn]; void add(int u,int to){
edge[cnt].u=u;
edge[cnt].to=to;
edge[cnt].next=head[u];
edge[cnt].vis=0;
head[u]=cnt++;
} void init(int n){
for(int i=0;i<=n;i++){
head[i]=-1;
dfn[i]=iscut[i]=subnet[i]=0;
belong[i].clear();
}
cnt=time=top=btot=0;
} void dfs(int u){
dfn[u]=low[u]=++time;
for(int i=head[u];i!=-1;i=edge[i].next){
if(edge[i].vis)continue;
edge[i].vis=edge[i^1].vis=1;
int to=edge[i].to;
st[++top]=i;
if(!dfn[to]){
dfs(to);
low[u]=min(low[u],low[to]);
if(dfn[u]<=low[to]){
subnet[u]++;
iscut[u]=1;
btot++;
do{
int now=st[top--];
belong[edge[now].u].push_back(btot);
belong[edge[now].to].push_back(btot);
bian[edge[now].id]=btot;
to=edge[now].u;
}while(to!=u);
}
}
else
low[u]=min(low[u],low[to]);
}
} int B[maxn<<2],F[maxn<<2],d[maxn<<2][20],pos[maxn<<2],tot,dep[maxn<<1];
bool treecut[maxn<<1];
void RMQ1(int n){
for(int i=1;i<=n;i++)d[i][0]=B[i];
for(int j=1;(1<<j)<=n;j++)
for(int i=1;i+j-1<=n;i++)
d[i][j]=min(d[i][j-1],d[i + (1<<(j-1))][j-1]);
} int RMQ(int L,int R){
int k=0;
while((1<<(k+1))<=R-L+1) k++;
return min(d[L][k],d[R-(1<<k)+1][k] );
} int lca(int a,int b){
if(pos[a] > pos[b])swap(a,b);
int ans=RMQ(pos[a],pos[b]);
return F[ans];
} //写了个RMQ求LCA
void DFS(int u){
dfn[u]=++time;
B[++tot]=dfn[u];
F[time]=u;
pos[u]=tot;
for(int i=head[u];i!=-1;i=edge[i].next){
int to=edge[i].to;
if(!dfn[to]){
if(treecut[u])
dep[to]=dep[u] + 1;
else
dep[to]=dep[u];
DFS(to);
B[++tot]=dfn[u];
}
}
} void solve(int n){
for(int i=0;i<=n;i++) {
dfn[i]=0;
} time=tot=0;
for(int i=1;i<=n;i++)
if(!dfn[i]){
dep[i]=0;
DFS(i);
}
RMQ1(tot);
int m,u,to;
scanf("%d",&m);
while(m--){
scanf("%d%d",&u,&to);
u=bian[u];to=bian[to];
if(u<0||to<0){
printf("0\n");continue;
}
int LCA=lca(u,to);
if(u==LCA)
printf("%d\n",dep[to]-dep[u]-treecut[u]);
else if(to == LCA)
printf("%d\n",dep[u]-dep[to]-treecut[to]);
else
printf("%d\n",dep[u]+dep[to]-2*dep[LCA]-treecut[LCA]);
}
} int main(){
int n,m,u,to;
while(scanf("%d%d",&n,&m)!=-1 && n){
init(n);
for(int i=1;i<=m;i++){
scanf("%d%d",&u,&to);
edge[cnt].id=i;
add(u,to);
edge[cnt].id=i;
add(to,u);
} for(int i=1;i<=n;i++)
if(!dfn[i]){
dfs(i);
subnet[i]--;
if(subnet[i]<=0)iscut[i]=0;
} int ditot=btot;
for(int i=1;i<=btot;i++)
treecut[i]=0;
for(int i=1;i<=btot+n;i++)
head[i]=-1;
cnt=0;
for(int i=1;i<=n;i++)
if(iscut[i]){
sort(belong[i].begin(),belong[i].end());
ditot++;
treecut[ditot]=1;
add(belong[i][0],ditot);
add(ditot,belong[i][0]);
for(int j=1;j<belong[i].size();j++)
if(belong[i][j]!=belong[i][j-1]){
add(belong[i][j],ditot);
add(ditot,belong[i][j]);
}
}
solve(ditot);
}
return 0;
}

【Targan+LCA】HDU 3686 Traffic Real Time Query的更多相关文章

  1. HDU 3686 Traffic Real Time Query System (图论)

    HDU 3686 Traffic Real Time Query System 题目大意 给一个N个点M条边的无向图,然后有Q个询问X,Y,问第X边到第Y边必需要经过的点有多少个. solution ...

  2. hdu 3686 Traffic Real Time Query System 点双两通分量 + LCA。这题有重边!!!

    http://acm.hdu.edu.cn/showproblem.php?pid=3686 我要把这题记录下来. 一直wa. 自己生成数据都是AC的.现在还是wa.留坑. 我感觉我现在倒下去床上就能 ...

  3. HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)

    Problem Description City C is really a nightmare of all drivers for its traffic jams. To solve the t ...

  4. HDU 3686 Traffic Real Time Query System(点双连通)

    题意 ​ 给定一张 \(n\) 个点 \(m\) 条边的无向图,\(q\) 次询问,每次询问两边之间的必经之点个数. 思路 ​ 求两点之间必经之边的个数用的是边双缩点,再求树上距离.而对比边双和点双之 ...

  5. 【刷题】HDU 5869 Different GCD Subarray Query

    Problem Description This is a simple problem. The teacher gives Bob a list of problems about GCD (Gr ...

  6. 【线段树】HDU 5493 Queue (2015 ACM/ICPC Asia Regional Hefei Online)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5493 题目大意: N个人,每个人有一个唯一的高度h,还有一个排名r,表示它前面或后面比它高的人的个数 ...

  7. 【归并排序】【逆序数】HDU 5775 Bubble Sort

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5775 题目大意: 冒泡排序的规则如下,一开始给定1~n的一个排列,求每个数字在排序过程中出现的最远端 ...

  8. 【线段树】HDU 5443 The Water Problem

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5443 题目大意: T组数据.n个值,m个询问,求区间l到r里的最大值.(n,m<=1000) ...

  9. 【刷题】HDU 2222 Keywords Search

    Problem Description In the modern time, Search engine came into the life of everybody like Google, B ...

随机推荐

  1. java集合类源码学习一

    对于java的集合类,首先看张图 这张图大致描绘出了java集合类的总览,两个体系,一个Collection集合体系一个Map集合体系.在说集合类之前,先说说Iterable这个接口,这个接口在jdk ...

  2. pycharm之ctrl+鼠标滚轮调整字体大小

    按照图示设置,可以添加:ctrl+鼠标滚轮调整字体大小功能 1. 2.

  3. python2与python3同时安装

    安装步骤: 下载 1.第一步先下载python2和python3的安装包,下载地址:https://www.python.org/downloads/windows/ 下载之后,分别给python2和 ...

  4. VirtualBox中安装的CentOS开启SSH并设置访问外网

    1.全局设置NAT网络 打开VirtualBox->管理->全局设定 网络->添加按钮->添加一个NAT网络(使用默认的就行,不用改动) 2.设置用来本机于VirtualBox ...

  5. 二、Git安装--Windows

    Git安装配置 在使用Git前我们需要先安装 Git.Git 目前支持 Linux/Unix.Solaris.Mac和 Windows 平台上运行. Git 各平台安装包下载地址为:http://gi ...

  6. 2.Buffer详解

  7. spring-dao.xml通常写法

    <?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.spr ...

  8. 最精美详尽的 HTTPS 原理图!

      来源:r6a.cn/ffJk 作为一个有追求的程序员,了解行业发展趋势和扩充自己的计算机知识储备都是很有必要的,特别是一些计算机基础方面的内容,就比如本篇文章要讲的计算机网络方面的知识.本文将为大 ...

  9. 新手学习Python第三方包库pip安装失败总结

    这篇文章纯原创,是之前自己学习使用pyhton时遇到的问题,故在此记录一下. 问题与需求:用python下载第三方库或包的时候出错怎么办? 方法有一下三种,可以解决大部分的问题. 1.在cmd命令控制 ...

  10. Python-序列反转和序列反转协议-reversed __reversed__

    reversed 将序列反转,依次把最后的元素放到第一个位置,把第一元素放到最后一个位置,变成生成器对象 name = "beimenchuixue" print(next(rev ...