欧几里德的两个后代 Stan 和 Ollie 正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的。给定两个正整数 M 和 N,从 Stan 开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数不能小于 0。然后是 Ollie,对刚才得到的数,和 M,N 中较小的那个数,再进行同样的操作……直到一个人得到了 0,他就取得了胜利。下面是他们用 (25,7) 两个数游戏的过程:

Start:(25,7)

Stan:(11,7)

Ollie:(4,7)

Stan:(4,3)

Ollie:(1,3)

Stan:(1,0)

Stan 赢得了游戏的胜利。

现在,假设他们完美地操作,谁会取得胜利呢?

输入格式
本题有多组测试数据。

第一行为测试数据的组数 C。 下面 C 行,每行为一组数据,包含两个正整数 M,N(M,N<2^31)

输出格式
对每组输入数据输出一行,如果 Stan 胜利,则输出 Stan wins;否则输出 Ollie wins。
# 以上是题目,正文开始
众所周知,博弈论有一个神函数叫SG函数,今天我不讲,~~我不会~~。我用自己的方法来做这道题。

# 先手的Stan占有绝对优势。
如果输入里两个数中较大的一个除以较小的一个的结果>2。Stan稳赢,因为Stan可以分析后面的战局,减成一个合适的数字。所以大数除小数>2,就可以直接输出了。同样,大数除小数可以整除,也可以直接输出。Stan直接减成0。

拿样例解释:25 7

如果Stan想让(4,7)时自己取,就先取成(11,7),Ollie被迫取成(4,7)。Stan达到目的。

如果Stan想让(4,7)时Ollie取,就直接取成(4,7),Ollie被迫取(4,7)。Stan达到目的。

//n和m就是那两个数。
if(n<m)//n如果小于m,就交换。所以n是大数,m是小数。
{
  k=n;
  n=m;
  m=k;
}
if(n/m>1)//大数除小数>1,Stan可以控制局面
{
  cout<<"Stan wins"<<endl;
  continue;
}
if(n%m==0)//大数除小数整除,Stan直接归零秒杀。
{
  cout<<"Stan wins"<<endl;
  continue;
}

一开始看不出来的话,就只能硬刚了。如果中途碰到可以控制局面的情况,那么碰到的那个人赢。不然就一直刚到其中一个数为0。

完整代码

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
using namespace std;
long long n,m,shu,hehe,k;
int main()
{
  cin>>hehe;
  for(int i=0;i<hehe;i++)
  {  
    cin>>n>>m;
    shu=0;
    if(n<m)//把n定为大数,m固定小数。
    {
      k=n;
      n=m;
      m=k;
    }
    if(n/m>1)//Stan稳赢情况
    {
      cout<<"Stan wins"<<endl;
      continue;
    }
    if(n%m==0)//Stan稳赢情况
    {
      cout<<"Stan wins"<<endl;
      continue;
    }
    while(true)//开局没有稳赢情况,开始硬刚
    {
      if(n<m)
      {
        k=n;
        n=m;
        m=k;
      }
      if(n/m>1)//控制局面点。到达者胜
      {
        if(shu%2==0)
        {
          cout<<"Stan wins"<<endl;
          break;
        }else
        {
          cout<<"Ollie wins"<<endl;
          break;
        }
      }
      if(n%m==0)//直接归零点。到达者胜
      {
        if(shu%2==0)
        {
          cout<<"Stan wins"<<endl;
          break;
        }else
        {
          cout<<"Ollie wins"<<endl;
          break;
        }
      }
      n-=m;//不会有必胜局面,只能做大数减小数的操作。
      shu++;//标记轮数。奇数轮是Ollie操作,偶数论是Stan操作,
    }
  }
return 0;
}

好的,就这么结束了。代码好2啊。

P1290 欧几里德的游戏(洛谷)的更多相关文章

  1. 洛谷——P1290 欧几里德的游戏

    P1290 欧几里德的游戏 题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的 ...

  2. P1290 欧几里德的游戏

    P1290 欧几里德的游戏 原本不想写的,但细节有些多qwq,还是放上吧. 假设a严格大于b 当a<b*2时,只有一种方法往下走:否则就可以有多种方法,并且一定至少有一种可以使自己必胜,因为可以 ...

  3. P4554 小明的游戏 (洛谷) 双端队列BFS

    最近没有更新博客,全是因为英语,英语太难了QWQ 洛谷春令营的作业我也不会(我是弱鸡),随机跳了2个题,难度不高,还是讲讲吧,学学新算法也好(可以拿来水博客) 第一题就是这个小明的游戏 小明最近喜欢玩 ...

  4. NOIP2012 Day1 T2国王游戏 洛谷P1080

    第一篇博客啊…… 由于我太弱了,还要去补不全的知识点准备参加人生第一次NOIp,所以第一篇博客就简短一点好了(偷懒就直说吧……) 洛谷P1080传送门 题意概括: 有N对数ai和bi,以及两个数a0和 ...

  5. 洛谷P1290 欧几里德的游戏

    题目:https://www.luogu.org/problemnew/show/P1290 只要出现n>=2*m,就可以每次把较大的数控制在较小的数的一倍与二倍之间,则控制了对方的走法: 每次 ...

  6. AC日记——欧几里得的游戏 洛谷 P1290

    题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数 ...

  7. LUOGU P1290 欧几里德的游戏

    题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数 ...

  8. 矩阵取数游戏洛谷p1005

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2. ...

  9. (基础 输入方法 栈)P1427 小鱼的数字游戏 洛谷

    题目描述 小鱼最近被要求参加一个数字游戏,要求它把看到的一串数字(长度不一定,以0结束,最多不超过100个,数字不超过2^32-1),记住了然后反着念出来(表示结束的数字0就不要念出来了).这对小鱼的 ...

随机推荐

  1. cb28a_c++_STL_算法_查找算法_(1)find_find_if

    cb28a_c++_STL_算法_查找算法_(1)find_find_iffind() //线性查找,比较慢.pos1 = find(ilist.begin(), ilist.end(), 5);fi ...

  2. vue-drag-resize 可拖拽可缩放的标签,如何管理多个拖拽元素之间的zIndex?操作上需要保持当前激活的组件是最上层,但是在总体上,又要确保其图层管理的顺序。

    麻烦总是不断出现,还好办法总比困难多, 1.公司开发一款可视化编辑html网页的多媒体编辑平台,牵扯到标签元素的拖拽,缩放,我找了找方法发现原生技术实现起来代码太多,麻烦,还好找到了一个vue组件,可 ...

  3. 10、一个action中处理多个方法的调用第二种方法method的方式

    在实际的项目中,经常采用现在的第二种方式在struct.xml中采用清单文件的方式 我们首先来看action package com.bjpowernode.struts2; import com.o ...

  4. Freemarker在replace替换是对NULL值的处理

    freemarker的对象调用内建函数时,比如userInfo对象的birthDay函数,页面${userInfo.birthDay}调用,当我想将birthDay值中的“-”替换为“/”时,${us ...

  5. eclipse使用git提交代码

    准备工作: 目的:eclipse使用git提交本地项目,提交至远程github上 eclipse版本:eclipse4.5  64位 jdk版本:jdk-1.7 64位 项目类型:maven web项 ...

  6. 【Spring】内嵌Tomcat&去Xml&调试Mvc

    菜瓜:今天听到个名词“父子容器”,百度了一下,感觉概念有点空洞,这是什么核武器? 水稻:你说的是SpringMvc和Spring吧,其实只是一个概念而已,用来将两个容器做隔离,起到解耦的作用,其中子容 ...

  7. 恕我直言你可能真的不会java第8篇-函数式接口

    一.函数式接口是什么? 所谓的函数式接口,实际上就是接口里面只能有一个抽象方法的接口.我们上一节用到的Comparator接口就是一个典型的函数式接口,它只有一个抽象方法compare. 只有一个抽象 ...

  8. eclipse 导入下载或拷贝的java Web项目时报错 ,或者是报错Unbound classpath container: 'JRE System Library

    在Problems里报错Description Resource Path Location Type Unbound classpath container: 'JRE System Library ...

  9. apache frpClien操作报错解决

    #打开配置文件vim /etc/vsftpd/vsftpd.conf #修改配置100行chroot_local_user=NO

  10. spring boot 整合Thymeleaf模板

    SpringBoot 是为了简化 Spring 应用的创建.运行.调试.部署等一系列问题而诞生的产物,自动装配的特性让我们可以更好的关注业务本身而不是外部的XML配置,我们只需遵循规范,引入相关的依赖 ...