LC算法技巧总结(二):双指针和滑动窗口技巧
我把双指针技巧再分为两类,一类是「快慢指针」,一类是「左右指针」。前者解决主要解决链表中的问题,比如典型的判定链表中是否包含环;后者主要解决数组(或者字符串)中的问题,比如二分查找。
一、快慢指针的常见算法
快慢指针一般都初始化指向链表的头结点 head,前进时快指针 fast 在前,慢指针 slow 在后,巧妙解决一些链表中的问题。
1、判定链表中是否含有环
这应该属于链表最基本的操作了,如果读者已经知道这个技巧,可以跳过。
单链表的特点是每个节点只知道下一个节点,所以一个指针的话无法判断链表中是否含有环的。
如果链表中不含环,那么这个指针最终会遇到空指针 null 表示链表到头了,这还好说,可以判断该链表不含环。
boolean hasCycle(ListNode head) {
while (head != null)
head = head.next;
return false;
}
但是如果链表中含有环,那么这个指针就会陷入死循环,因为环形数组中没有 null 指针作为尾部节点。
经典解法就是用两个指针,一个跑得快,一个跑得慢。如果不含有环,跑得快的那个指针最终会遇到 null,说明链表不含环;如果含有环,快指针最终会超慢指针一圈,和慢指针相遇,说明链表含有环。
boolean hasCycle(ListNode head) {
ListNode fast, slow;
fast = slow = head;
while (fast != null && fast.next != null) {
fast = fast.next.next;
slow = slow.next;
if (fast == slow) return true;
}
return false;
}
2、已知链表中含有环,返回这个环的起始位置
这个问题一点都不困难,有点类似脑筋急转弯,先直接看代码:
ListNode detectCycle(ListNode head) {
ListNode fast, slow;
fast = slow = head;
while (fast != null && fast.next != null) {
fast = fast.next.next;
slow = slow.next;
if (fast == slow) break;
}
// 上面的代码类似 hasCycle 函数
slow = head;
while (slow != fast) {
fast = fast.next;
slow = slow.next;
}
return slow;
}
可以看到,当快慢指针相遇时,让其中任一个指针指向头节点,然后让它俩以相同速度前进,再次相遇时所在的节点位置就是环开始的位置。这是为什么呢?
第一次相遇时,假设慢指针 slow 走了 k 步,那么快指针 fast 一定走了 2k 步,也就是说比 slow 多走了 k 步(也就是环的长度)。
设相遇点距环的起点的距离为 m,那么环的起点距头结点 head 的距离为 k - m,也就是说如果从 head 前进 k - m 步就能到达环起点。
巧的是,如果从相遇点继续前进 k - m 步,也恰好到达环起点。
所以,只要我们把快慢指针中的任一个重新指向 head,然后两个指针同速前进,k - m 步后就会相遇,相遇之处就是环的起点了。
3、寻找链表的中点
类似上面的思路,我们还可以让快指针一次前进两步,慢指针一次前进一步,当快指针到达链表尽头时,慢指针就处于链表的中间位置。
while (fast != null && fast.next != null) {
fast = fast.next.next;
slow = slow.next;
}
// slow 就在中间位置
return slow;
当链表的长度是奇数时,slow 恰巧停在中点位置;如果长度是偶数,slow 最终的位置是中间偏右:
寻找链表中点的一个重要作用是对链表进行归并排序。
回想数组的归并排序:求中点索引递归地把数组二分,最后合并两个有序数组。对于链表,合并两个有序链表是很简单的,难点就在于二分。
但是现在你学会了找到链表的中点,就能实现链表的二分了。关于归并排序的具体内容本文就不具体展开了。
4、寻找链表的倒数第 k 个元素
我们的思路还是使用快慢指针,让快指针先走 k 步,然后快慢指针开始同速前进。这样当快指针走到链表末尾 null 时,慢指针所在的位置就是倒数第 k 个链表节点(为了简化,假设 k 不会超过链表长度):
ListNode slow, fast;
slow = fast = head;
while (k-- > 0)
fast = fast.next;
while (fast != null) {
slow = slow.next;
fast = fast.next;
}
return slow;
二、左右指针的常用算法
左右指针在数组中实际是指两个索引值,一般初始化为 left = 0, right = nums.length - 1 。
1、二分查找
以前写的《二分查找》有详细讲解,这里只写最简单的二分算法,旨在突出它的双指针特性:
int binarySearch(int[] nums, int target) {
int left = 0;
int right = nums.length - 1;
while(left <= right) {
int mid = (right + left) / 2;
if(nums[mid] == target)
return mid;
else if (nums[mid] < target)
left = mid + 1;
else if (nums[mid] > target)
right = mid - 1;
}
return -1;
}
2、两数之和
直接看一道 LeetCode 题目(经典Two Sum)吧:
只要数组有序,就应该想到双指针技巧。这道题的解法有点类似二分查找,通过调节 left 和 right 可以调整 sum 的大小:
int[] twoSum(int[] nums, int target) {
int left = 0, right = nums.length - 1;
while (left < right) {
int sum = nums[left] + nums[right];
if (sum == target) {
// 题目要求的索引是从 1 开始的
return new int[]{left + 1, right + 1};
} else if (sum < target) {
left++; // 让 sum 大一点
} else if (sum > target) {
right--; // 让 sum 小一点
}
}
return new int[]{-1, -1};
}
3、反转数组
void reverse(int[] nums) {
int left = 0;
int right = nums.length - 1;
while (left < right) {
// swap(nums[left], nums[right])
int temp = nums[left];
nums[left] = nums[right];Java
nums[right] = temp;
left++; right--;
}
}
4、滑动窗口算法
这也许是双指针技巧的最高境界了,如果掌握了此算法,可以解决一大类子字符串匹配的问题,不过「滑动窗口」稍微比上述的这些算法复杂些。
详情见下文(来自东哥的算法讲解的思路)
三、滑动窗口技巧
滑动窗口算法框架中,这里转自一首小诗来介绍。
本文就解决一类最难掌握的双指针技巧:滑动窗口技巧。总结出一套框架,可以保你闭着眼睛都能写出正确的解法。
说起滑动窗口算法,很多读者都会头疼。这个算法技巧的思路非常简单,就是维护一个窗口,不断滑动,然后更新答案么。LeetCode 上有起码 10 道运用滑动窗口算法的题目,难度都是中等和困难。该算法的大致逻辑如下:
int left = 0, right = 0;
while (right < s.size()) {`
// 增大窗口
window.add(s[right]);
right++;
while (window needs shrink) {
// 缩小窗口
window.remove(s[left]);
left++;
}
}
这个算法技巧的时间复杂度是 O(N),比字符串暴力算法要高效得多。
其实困扰大家的,不是算法的思路,而是各种细节问题。比如说如何向窗口中添加新元素,如何缩小窗口,在窗口滑动的哪个阶段更新结果。即便你明白了这些细节,也容易出 bug,找 bug 还不知道怎么找,真的挺让人心烦的。
所以今天我就写一套滑动窗口算法的代码框架,我连再哪里做输出 debug 都给你写好了,以后遇到相关的问题,你就默写出来如下框架然后改三个地方就行,还不会出 bug:
/* 滑动窗口算法框架 */
void slidingWindow(string s, string t) {
unordered_map<char, int> need, window;
for (char c : t) need[c]++;
int left = 0, right = 0;
int valid = 0;
while (right < s.size()) {
// c 是将移入窗口的字符
char c = s[right];
// 右移窗口
right++;
// 进行窗口内数据的一系列更新
...
/*** debug 输出的位置 ***/
printf("window: [%d, %d)\n", left, right);
/********************/
// 判断左侧窗口是否要收缩
while (window needs shrink) {
// d 是将移出窗口的字符
char d = s[left];
// 左移窗口
left++;
// 进行窗口内数据的一系列更新
...
}
}
}
其中两处 ...
表示的更新窗口数据的地方,到时候你直接往里面填就行了。
而且,这两个 ...
处的操作分别是右移和左移窗口更新操作,等会你会发现它们操作是完全对称的。
说句题外话,我发现很多人喜欢执着于表象,不喜欢探求问题的本质。比如说有很多人评论我这个框架,说什么散列表速度慢,不如用数组代替散列表;还有很多人喜欢把代码写得特别短小,说我这样代码太多余,影响编译速度,LeetCode 上速度不够快。
我服了。算法看的是时间复杂度,你能确保自己的时间复杂度最优,就行了。至于 LeetCode 所谓的运行速度,那个都是玄学,只要不是慢的离谱就没啥问题,根本不值得你从编译层面优化,不要舍本逐末……
LC算法技巧总结(二):双指针和滑动窗口技巧的更多相关文章
- 双指针之滑动窗口(长度最小的子数组 和 和为s的连续正数序列)
双指针之滑动窗口 (长度最小的子数组:和为s的连续正数序列) 1, 什么时候使用? (与子数组/字符串 有关的题目)~如果给了某个具体值的target,即用滑动窗口 不然就双指针(一般做法,左边< ...
- Java实现 LeetCode 532 数组中的K-diff数对(双指针,滑动窗口)
532. 数组中的K-diff数对 给定一个整数数组和一个整数 k, 你需要在数组里找到不同的 k-diff 数对.这里将 k-diff 数对定义为一个整数对 (i, j), 其中 i 和 j 都是数 ...
- 7、滑动窗口套路算法框架——Go语言版
前情提示:Go语言学习者.本文参考https://labuladong.gitee.io/algo,代码自己参考抒写,若有不妥之处,感谢指正 关于golang算法文章,为了便于下载和整理,都已开源放在 ...
- Sentinel滑动窗口算法
在前面搞清楚了Sentinel的使用后,大致理了一下Sentinel的责任链,搞清楚了这个,基本就已经梳理清楚sentinel-core模块的大部分内容,顺着这条链路可以继续梳理很多东西. 知其然.知 ...
- ASP.NET Core中使用滑动窗口限流
滑动窗口算法用于应对请求在时间周期中分布不均匀的情况,能够更精确的应对流量变化,比较著名的应用场景就是TCP协议的流量控制,不过今天要说的是服务限流场景中的应用. 算法原理 这里假设业务需要每秒钟限流 ...
- 算法与数据结构基础 - 双指针(Two Pointers)
双指针基础 双指针(Two Pointers)是面对数组.链表结构的一种处理技巧.这里“指针”是泛指,不但包括通常意义上的指针,还包括索引.迭代器等可用于遍历的游标. 同方向指针 设定两个指针.从头往 ...
- 滑动窗口(Sliding Window)技巧总结
什么是滑动窗口(Sliding Window) The Sliding Problem contains a sliding window which is a sub – list that run ...
- 粘包、拆包发生原因滑动窗口、MSS/MTU限制、Nagle算法
[TCP协议](3)---TCP粘包黏包 [TCP协议](3)---TCP粘包黏包 有关TCP协议之前写过两篇博客: 1.[TCP协议](1)---TCP协议详解 2.[TCP协议](2)---TCP ...
- [DeeplearningAI笔记]卷积神经网络3.1-3.5目标定位/特征点检测/目标检测/滑动窗口的卷积神经网络实现/YOLO算法
4.3目标检测 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.1目标定位 对象定位localization和目标检测detection 判断图像中的对象是不是汽车--Image clas ...
随机推荐
- 利用遗传算法求解TSP问题
转载地址 https://blog.csdn.net/greedystar/article/details/80343841 目录 一.问题描述 二.算法描述 三.求解说明 四.参考资料 五.源代码 ...
- 基于Linux系统geth的安装
转载地址 https://blog.csdn.net/qq_36124194/article/details/83658580 基于Linux系统geth的安装 安装ethereum sudo apt ...
- golang 数据类型/基础语法
常量 变量 复合类型 结构体 数组 基础类型 整型 浮点型 复数 bool 值 字符型 字符串 错误(稍微有异议) 引用类型 切片 指针 字典 管道 函数 接口 其他语法结构 包 流程控制 运算符 注 ...
- 30分钟闲置服务器建站(gitlab为例)
前言 最近博主的阿里云主机又到了续费的时候了,刚买云主机的时候那是各种优惠各种打折,续费的时候只能当孙子了. 为了节省开支,又保证高性能的前提下,买了台10代NUC,内存和ssd自选,搭建一台个人服务 ...
- python基础 Day1
Python开发笔记 Day1 1.cpu内存 硬盘 操作系统 cpu:计算机的运算和计算中心,相当于人类大脑 内存:暂时存储数据,临时加载数据应用程序,4G(内存速度快,断电即消失) 硬盘:磁盘,长 ...
- Python目录与文件操作
一.判断一个路径是否存在 os.path.exists(path) 如果路径存在则返回True,否则返回False. import os import getpass # 获取当前系统用户名 user ...
- ZK的watch机制
1.watcher原理框架 由图看出,zk的watcher由客户端,客户端WatchManager,zk服务器组成.整个过程涉及了消息通信及数据存储. zk客户端向zk服务器注册watcher的同时, ...
- Java多线程同步_synchronized
1.synchronized是什么?synchronized是Java中的关键字,是一种同步锁.它修饰的对象有以下几种:1. 修饰一个代码块,被修饰的代码块称为同步语句块,其作用的范围是大括号{}括起 ...
- 实用的git log用法
git log可以很方便地查看日志,可以根据自己需要,将日志按照特定格式显示,或者输出某种格式. 最原始的输出样式: $ git log commit ca82a6dff817ec66f4434200 ...
- discuz论坛替换logo之后不显示该怎么办
http://www.wocaoseo.com/thread-2-1-1.html 这个虽然不算是seo的问题,但是在平时的操作之中经常性的遇到,常常是我用FTP已经上传替换了原来的logo,但是前台 ...