Geometry Problem

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 1722    Accepted Submission(s): 304
Special Judge

Problem Description
Alice is interesting in computation geometry problem recently. She found a interesting problem and solved it easily. Now she will give this problem to you :

You are given N distinct points (Xi,Yi) on the two-dimensional plane. Your task is to find a point P and a real number R, such that for at least ⌈N2⌉ given points, their distance to point P is equal to R.
 
Input
The first line is the number of test cases.

For each test case, the first line contains one positive number N(1≤N≤105).

The following N lines describe the points. Each line contains two real numbers Xi and Yi (0≤|Xi|,|Yi|≤103) indicating one give point. It's guaranteed that N points are distinct.
 
Output
For each test case, output a single line with three real numbers XP,YP,R, where (XP,YP) is the coordinate of required point P. Three real numbers you output should satisfy 0≤|XP|,|YP|,R≤109.

It is guaranteed that there exists at least one solution satisfying all conditions. And if there are different solutions, print any one of them. The judge will regard two point's distance as R if it is within an absolute error of 10−3 of R.
 
Sample Input
1
7
1 1
1 0
1 -1
0 1
-1 1
0 -1
-1 0
 
Sample Output
0 0 1
 
这一题让我学会了随机数法。
 
题意:找出一个圆使至少n/2个点在圆上(数据保证有解)
 
解题思路:用普通的for循环肯定会超,因为数据保证有解,我们随机三个点,这三个点都在圆上的概率是0.5*0.5*0.5=0.125,三个点不都在圆上的概率是7/8,那么随机100次,概率就是(7/8)^100,约为1e-6,基本接近于0了,也就是说随机一百遍基本就能找到三个点都在圆上的情况,也就能找到那个圆的圆心和半径了。
 
注意坑点:1.n<5的情况要另考虑  2.三点共线  3.判断找到圆的条件(我一开始是cnt<=n/2,这样n如果从0开始遍历答案就不对了
 
附ac代码:
 1 #include <iostream>
2 #include <string.h>
3 #include <algorithm>
4 #include <cstdio>
5 #include <cstdlib>
6 #include <cmath>
7 using namespace std;
8 typedef long long ll;
9 const int maxn = 1e5+10;
10 struct nod
11 {
12 double x;
13 double y;
14 }nu[maxn];
15 int vis[maxn];
16 double xx1,yy1,xx2,yy2,xx3,yy3;
17 void getr(double &x,double &y,double &r)
18 {
19 // printf("%lf %lf\n",xx2,xx1);
20 double a=2*(xx2-xx1);
21 double b=2*(yy2-yy1);
22 double c=xx2*xx2-xx1*xx1+yy2*yy2-yy1*yy1;
23 double d=2*(xx3-xx2);
24 double e=2*(yy3-yy2);
25 double f=xx3*xx3-xx2*xx2+yy3*yy3-yy2*yy2;
26 x=(b*f-e*c)/(b*d-e*a);
27 y=(a*f-d*c)/(a*e-b*d);
28 r=sqrt((x-xx1)*(x-xx1)+(y-yy1)*(y-yy1));
29 // printf("%lf %lf %lf\n",x,y,r);
30 }
31 int main()
32 {
33 int t;
34 int n;
35 scanf("%d",&t);
36 while(t--)
37 {
38
39 scanf("%d",&n);
40 for(int i=0;i<n;++i)
41 scanf("%lf%lf",&nu[i].x,&nu[i].y);
42 if(n<=2)
43 {
44 printf("%lf %lf %lf\n",nu[0].x,nu[0].y,0.0);
45 }
46 else if(n<=4)
47 {
48 double x,y,r;
49 x=(nu[0].x+nu[1].x)/2;
50 y=(nu[0].y+nu[1].y)/2;
51 r=sqrt((x-nu[0].x)*(x-nu[0].x)+(y-nu[0].y)*(y-nu[0].y));
52 printf("%lf %lf %lf\n",x,y,r);
53 }
54 else
55 {
56 while (true)
57 {
58 int coo1=rand()%n;
59 int coo2=rand()%n;
60 int coo3=rand()%n;
61 if(coo1==coo2 || coo1==coo3 || coo2==coo3) continue;
62 xx1=nu[coo1].x; yy1=nu[coo1].y;
63 xx2=nu[coo2].x; yy2=nu[coo2].y;
64 xx3=nu[coo3].x; yy3=nu[coo3].y;
65 if(fabs((yy3-yy2)*(xx2-xx1)-(xx3-xx2)*(yy2-yy1))<=1e-6)
66 continue;
67 double x=0,y=0,r=0;
68 getr(x,y,r);
69 int cnt=0;
70 for(int i=0;i<n;++i)
71 {
72 if(fabs(r*r- ((nu[i].x-x)*(nu[i].x-x)+(nu[i].y-y)*(nu[i].y-y)) )<=1e-6)
73 ++cnt;
74 }
75 if(cnt*2>=n)
76 {
77 printf("%lf %lf %lf\n",x,y,r);
78 break;
79 }
80 }
81 }
82 }
83 return 0;
84 }

hdu 6242 Geometry Problem的更多相关文章

  1. HDU - 6242 Geometry Problem (几何,思维,随机)

    Geometry Problem HDU - 6242 Alice is interesting in computation geometry problem recently. She found ...

  2. HDU 6242 Geometry Problem(计算几何 + 随机化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6242 思路:当 n == 1 时 任取一点 p 作为圆心即可. n >= 2 && ...

  3. HDU - 6242:Geometry Problem(随机+几何)

    Alice is interesting in computation geometry problem recently. She found a interesting problem and s ...

  4. hdu 1086 You can Solve a Geometry Problem too

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  5. (hdu step 7.1.2)You can Solve a Geometry Problem too(乞讨n条线段,相交两者之间的段数)

    称号: You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/ ...

  6. HDU 1086:You can Solve a Geometry Problem too

    pid=1086">You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  7. hdu 1086:You can Solve a Geometry Problem too(计算几何,判断两线段相交,水题)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  8. hdu 1086 You can Solve a Geometry Problem too (几何)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  9. hdu 1086 You can Solve a Geometry Problem too 求n条直线交点的个数

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

随机推荐

  1. 机器学习7-模型保存&无监督学习

    模型保存和加载 sklearn模型的保存和加载API from sklearn.externals import joblib 保存:joblib.dump(rf, 'test.pkl') 加载:es ...

  2. PW6513高压40V的LDO芯片,SOT89封装

    一般说明 PW6513系列是一款高精度,高输入电压,低静态电流,高速,低具有高纹波抑制的线性稳压器.输入电压高达40V,负载电流为在电压=5V和VIN=7V时高达300mA.该设备采用BCD工艺制造. ...

  3. 【工具篇】Mysql的安装和使用

    [导读]Mysql是数据分析师入门级的技能之一,对于很多小白同学来说,可能还没有机会接触SQL知识.那么我们如何熟悉和练习SQL呢,今天教大家安装两个软件:MySQL和Navicat.后续我们会推出S ...

  4. Mac中安装Git

    Mac 安装git 打开Mac终端输入git命令 如果出现以下代码说明已经安装 usage: git [--version] [--help] [-C <path>] [-c <na ...

  5. Java语法糖详解

    语法糖 语法糖(Syntactic Sugar),也称糖衣语法,是由英国计算机学家 Peter.J.Landin 发明的一个术语,指在计算机语言中添加的某种语法,这种语法对语言的功能并没有影响,但是更 ...

  6. java画海报二维码

    package cn.com.yitong.ares.qrcode; import java.awt.BasicStroke;import java.awt.Color;import java.awt ...

  7. Win10家庭版Hyper-V出坑(完美卸载,冲突解决以及Device Guard问题)

    本文链接:https://blog.csdn.net/hotcoffie/article/details/85043894 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附 ...

  8. MSSQL 注入笔记

    前置知识: 登录名:登录sql server服务器的用户,而不是操作"数据库用户名". 固定服务器角色:就是上面登录名所属的权限组.其中重要的就是"sysadmin&qu ...

  9. 一文打尽端口复用 VS Haproxy端口复用

    出品|MS08067实验室(www.ms08067.com) 本文作者:Spark(Ms08067内网安全小组成员) 1.概述   Haproxy是一个使用c语言开发的高性能负载均衡代理软件,提供tc ...

  10. XCTF-你是谁

    前期工作 查壳,无.运行 不知道有啥用,迷宫题? 逆向分析 文件结构 查看了一下主要逻辑在background中,因为MainActivity的setContentView是background.ba ...