本文只是简单的对h5py库的基本创建文件,数据集和读取数据的方式进行介绍,作者刚接触h5py,完全靠看文档自学,如果哪里说的不对,欢迎纠正!如果读者需要进一步详细的学习h5py的更多知识,请参考h5py的官方文档


h5py简单介绍

h5py文件是存放两类对象的容器,数据集(dataset)和组(group),dataset类似数组类的数据集合,和numpy的数组差不多。group是像文件夹一样的容器,它好比python中的字典,有键(key)和值(value)。group中可以存放dataset或者其他的group。”键”就是组成员的名称,”值”就是组成员对象本身(组或者数据集),下面来看下如何创建组和数据集。

1. 创建一个h5py文件

import h5py
#要是读取文件的话,就把w换成r
f=h5py.File("myh5py.hdf5","w")

在当前目录下会生成一个myh5py.hdf5文件

2. 创建dataset数据集

import h5py
f=h5py.File("myh5py.hdf5","w")
#deset1是数据集的name,(20,)代表数据集的shape,i代表的是数据集的元素类型
d1=f.create_dataset("dset1", (20,), 'i')
for key in f.keys():
print(key)
print(f[key].name)
print(f[key].shape)
print(f[key].value) 输出:
dset1
/dset1
(20,)
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

这里我们仅仅创建了一个存放20个整型元素的数据集,并没有赋值,默认全是0,如何赋值呢,看下面的代码。

import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w") d1=f.create_dataset("dset1",(20,),'i')
#赋值
d1[...]=np.arange(20)
#或者我们可以直接按照下面的方式创建数据集并赋值
f["dset2"]=np.arange(15) for key in f.keys():
print(f[key].name)
print(f[key].value) 输出:
/dset1
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
/dset2
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]

如果我们有现成的numpy数组,那么可以在创建数据集的时候就赋值,这个时候就不必指定数据的类型和形状了,只需要把数组名传给参数data。

import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")
a=np.arange(20)
d1=f.create_dataset("dset1",data=a)
for key in f.keys():
print(f[key].name)
print(f[key].value) 输出:
/dset1
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]

现在把这几种创建的方式混合写下。看下面的代码

import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")
#分别创建dset1,dset2,dset3这三个数据集
a=np.arange(20)
d1=f.create_dataset("dset1",data=a) d2=f.create_dataset("dset2",(3,4),'i')
d2[...]=np.arange(12).reshape((3,4)) f["dset3"]=np.arange(15) for key in f.keys():
print(f[key].name)
print(f[key].value) 输出:
/dset1
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
/dset2
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
/dset3
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]

3. 创建group组

import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w") #创建一个名字为bar的组
g1=f.create_group("bar") #在bar这个组里面分别创建name为dset1,dset2的数据集并赋值。
g1["dset1"]=np.arange(10)
g1["dset2"]=np.arange(12).reshape((3,4)) for key in g1.keys():
print(g1[key].name)
print(g1[key].value) 输出:
/bar/dset1
[0 1 2 3 4 5 6 7 8 9]
/bar/dset2
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]

注意观察数据集dset1和dset2的名字是不是有点和前面的不一样,如果是直接创建的数据集,不在任何组里面,那么它的名字就是/+名字,现在这两个数据集都在bar这个group(组)里面,名字就变成了/bar+/名字,是不是有点文件夹的感觉!继续看下面的代码,你会对group和dataset的关系进一步了解。

import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w") #创建组bar1,组bar2,数据集dset
g1=f.create_group("bar1")
g2=f.create_group("bar2")
d=f.create_dataset("dset",data=np.arange(10)) #在bar1组里面创建一个组car1和一个数据集dset1。
c1=g1.create_group("car1")
d1=g1.create_dataset("dset1",data=np.arange(10)) #在bar2组里面创建一个组car2和一个数据集dset2
c2=g2.create_group("car2")
d2=g2.create_dataset("dset2",data=np.arange(10)) #根目录下的组和数据集
print(".............")
for key in f.keys():
print(f[key].name) #bar1这个组下面的组和数据集
print(".............")
for key in g1.keys():
print(g1[key].name) #bar2这个组下面的组和数据集
print(".............")
for key in g2.keys():
print(g2[key].name) #顺便看下car1组和car2组下面都有什么,估计你都猜到了为空。
print(".............")
print(c1.keys())
print(c2.keys()) 输出:
.............
/bar1
/bar2
/dset
.............
/bar1/car1
/bar1/dset1
.............
/bar2/car2
/bar2/dset2
.............
[]
[]

python库——h5py入门讲解的更多相关文章

  1. Python 数据处理库 pandas 入门教程

    Python 数据处理库 pandas 入门教程2018/04/17 · 工具与框架 · Pandas, Python 原文出处: 强波的技术博客 pandas是一个Python语言的软件包,在我们使 ...

  2. Python简单爬虫入门三

    我们继续研究BeautifulSoup分类打印输出 Python简单爬虫入门一 Python简单爬虫入门二 前两部主要讲述我们如何用BeautifulSoup怎去抓取网页信息以及获取相应的图片标题等信 ...

  3. 顶级Python库

    绝不能错过的24个顶级Python库 Python有以下三个特点: · 易用性和灵活性 · 全行业高接受度:Python无疑是业界最流行的数据科学语言 · 用于数据科学的Python库的数量优势 事实 ...

  4. 《Python编程:从入门到实践》分享下载

    书籍信息 书名:<Python编程:从入门到实践> 原作名:Python Crash Course 作者: [美] 埃里克·马瑟斯 豆瓣评分:9.1分(2534人评价) 内容简介 本书是一 ...

  5. 想学Python不知如何入门,教你!

    一.入门引导   想必有很多小伙伴想学习Python,又不知道如何入门,总觉得学习一定要头悬梁,锥刺股!NO,今天给大家分享下如何轻松入门Python!   首先,我们要学习Python,那一定要和你 ...

  6. Mysql C语言API编程入门讲解

    原文:Mysql C语言API编程入门讲解 软件开发中我们经常要访问数据库,存取数据,之前已经有网友提出让鸡啄米讲讲数据库编程的知识,本文就详细讲解如何使用Mysql的C语言API进行数据库编程.   ...

  7. python爬虫如何入门

    学爬虫是循序渐进的过程,作为零基础小白,大体上可分为三个阶段,第一阶段是入门,掌握必备的基础知识,第二阶段是模仿,跟着别人的爬虫代码学,弄懂每一行代码,第三阶段是自己动手,这个阶段你开始有自己的解题思 ...

  8. Python 30分钟入门指南

    Python 30分钟入门指南 为什么 OIer 要学 Python? Python 语言特性简洁明了,使用 Python 写测试数据生成器和对拍器,比编写 C++ 事半功倍. Python 学习成本 ...

  9. Python编程从入门到实践笔记——类

    Python编程从入门到实践笔记——类 #coding=gbk #Python编程从入门到实践笔记——类 #9.1创建和使用类 #1.创建Dog类 class Dog():#类名首字母大写 " ...

随机推荐

  1. LIS的简单应用:UVA-437

    上一次紫芝详细地介绍了动态规划中的经典问题LIS,今天我们抽出一个类似思想的简单题目进行实践练习. The Tower of Babylon(巴比伦塔) Perhaps you have heard ...

  2. 删除cookie时遇到的坑

    曾经有个“导出中”的需求,我用iframe实现下载对话框和cookie轮询验证token去解决的,但是昨天又发现了一个新问题: 因为前台需要提示导出失败的详细信息,这个信息我是在token返回0的时候 ...

  3. vi编辑器查找

    当你用vi打开一个文件后,因为文件太长,如何才能找到你所要查找的关键字呢? 你在命令模式下敲斜杆( / )这时在状态栏(也就是屏幕左下脚)就出现了 “/” 然后输入你要查找的关键字敲回车就可以了. 如 ...

  4. phpmyadmin消除无法保存最近表的提示

    运行 sudo dpkg-reconfigure phpmyadmin 重新配置phpmyadmin ip选择127.0.0.1,端口3306,"MySQL username for php ...

  5. Android recyclerview 只显示一行 宽度不适配

    最近学习recyclerview 遇到的问题 1.宽度不适配 正确写法 LayoutInflater.from(context).inflate(R.layout.item_view,parent,f ...

  6. MySQL存储过程(批量生成论坛中发帖、回帖、主题等数据)

    USE 数据库名称1;DROP PROCEDURE IF EXISTS 数据库名称1.存储过程名称;delimiter $$CREATE PROCEDURE 数据库名称1.存储过程名称(in v_co ...

  7. java冒泡排序和快速排序代码

    冒泡排序: package nicetime.com; //基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,// 让较大的数往下沉,较小的往上 ...

  8. ThreadLocal使用,应用场景,源码实现,内存泄漏

    首先,ThreadLocal 不是用来解决共享对象的多线程访问问题的,一般情况下,通过ThreadLocal.set() 到线程中的对象是该线程自己使用的对象,其他线程是不需要访问的,也访问不到的.各 ...

  9. 洛谷 P1340 兽径管理

    题目描述 约翰农场的牛群希望能够在 N 个(1<=N<=200) 草地之间任意移动.草地的编号由 1到 N.草地之间有树林隔开.牛群希望能够选择草地间的路径,使牛群能够从任一 片草地移动到 ...

  10. 生鲜o2o配送应用系统,包括Android源码+SSH带后台管理系统

    前台功能划分    我的 登录            账户+密码 注册            订单管理 查看/删除(显示订单详情)                支付(提交订单)           ...