JAVA THINGKING (一)
保存数据位置:
(1)
寄存器。这是最快的保存区域,因为它位于和其他所有保存方式不同的地方:处理器内部。
(2)
堆栈。驻留于常规RAM(随机访问存储器)区域,这是一种特别快、特别有效的数据保存方式,仅次于寄存器。创建程序时,Java编译器必须准确地知道堆栈内保存的所有数据的“长度”以及“存在时间”。Java“对象句柄”以及“基本数据类型”也保存在堆栈,基本数据包括:boolean/char/byte /short/int/long/float/double,但Java对象并不放到其中。
(3)
堆。一种常规用途的内存池(也在RAM区域),其中保存了Java对象。和堆栈不同,“内存堆”或“堆”(Heap)最吸引人的地方在于编译器不必知道要从堆里分配多少存储空间,也不必知道存储的数据要在堆里停留多长的时间。因此,用堆保存数据时会得到更大的灵活性。要求创建一个对象时,只需用new命令编制相关的代码即可。执行这些代码时,会在堆里自动进行数据的保存。当然,为达到这种灵活性,必然会付出一定的代价:在堆里分配存储空间时会花掉更长的时间!
(4)
静态存储。这儿的“静态”(Static)是指“位于固定位置”(尽管也在RAM里)。程序运行期间,静态存储的数据将随时等候调用。可用static关键字指出一个对象的特定元素是静态的。但Java对象本身永远都不会置入静态存储空间。
(5)
常数存储。常数值通常直接置于程序代码内部。这样做是安全的,因为它们永远都不会改变。有的常数需要严格地保护,所以可考虑将它们置入只读存储器(ROM)。
(6)
非RAM存储。若数据完全独立于一个程序之外,则程序不运行时仍可存在,并在程序的控制范围之外。其中两个最主要的例子便是“流式对象”和“固定对象”。对于流式对象,对象会变成字节流,通常会发给另一台机器。而对于固定对象,对象保存在磁盘中。即使程序中止运行,它们仍可保持自己的状态不变。
抽象的进步
所有编程语言的最终目的都是提供一种“抽象”方法。一种较有争议的说法是:解决问题的复杂程度直接取决于抽象的种类及质量。汇编语言是对基础机器的少量抽象。后来的许多“命令式”语言(如FORTRAN,BASIC和C)是对汇编语言的一种抽象。与汇编语言相比,这些语言已有了长足的进步,但它们的抽象原理依然要求我们着重考虑计算机的结构,而非考虑问题本身的结构。在机器模型与实际解决的问题模型之间,程序员必须建立起一种联系。
为机器建模的另一个方法是为要解决的问题制作模型。面向对象的程序设计在此基础上则跨出了一大步,程序员可利用一些工具表达问题空间内的元素。由于这种表达非常普遍,所以不必受限于特定类型的问题。我们将问题空间中的元素以及它们在方案空间的表示物称作“对象”(Object)。当然,还有一些在问题空间没有对应体的其他对象。通过添加新的对象类型,程序可进行灵活的调整,以便与特定的问题配合。所以在阅读方案的描述代码时,会读到对问题进行表达的话语。与我们以前见过的相比,这无疑是一种更加灵活、更加强大的语言抽象方法。总之,OOP允许我们根据问题来描述问题,而不是根据方案。然而,仍有一个联系途径回到计算机。每个对象都类似一台小计算机;它们有自己的状态,而且可要求它们进行特定的操作。与现实世界的“对象”或者“物体”相比,编程“对象”与它们也存在共通的地方:它们都有自己的特征和行为。
(1) 所有东西都是对象。
(2)
程序是一大堆对象的组合;通过消息传递,各对象知道自己该做些什么。为了向对象发出请求,需向那个对象“发送一条消息”。
(3)
每个对象都有自己的存储空间,可容纳其他对象。
(4)
每个对象都有一种类型。根据语法,每个对象都是某个“类”的一个“实例”。
(5)
同一类所有对象都能接收相同的消息。
访问控制:
一个原因是防止程序员接触他们不该接触的东西——通常是内部数据类型的设计思想。若只是为了解决特定的问题,用户只需操作接口即可,毋需明白这些信息。
第二个原因是允许库设计人员修改内部结构,不用担心它会对客户程序员造成什么影响。
继承:
我们费尽心思做出一种数据类型后,假如不得不又新建一种类型,令其实现大致相同的功能,那会是一件非常令人灰心的事情。但若能利用现成的数据类型,对其进行“克隆”,再根据情况进行添加和修改,情况就显得理想多了。“继承”正是针对这个目标而设计的。但继承并不完全等价于克隆。在继承过程中,若原始类(正式名称叫作基础类、超类或父类)发生了变化,修改过的“克隆”类(正式名称叫作继承类或者子类)也会反映出这种变化。在Java语言中,继承是通过extends关键字实现的
使用继承时,相当于创建了一个新类。这个新类不仅包含了现有类型的所有成员,但更重要的是,它复制了基础类的接口。也就是说,可向基础类的对象发送的所有消息亦可原样发给衍生类的对象。根据可以发送的消息,我们能知道类的类型。这意味着衍生类具有与基础类相同的类型!为真正理解面向对象程序设计的含义,首先必须认识到这种类型的等价关系。
由于基础类和衍生类具有相同的接口,所以那个接口必须进行特殊的设计。也就是说,对象接收到一条特定的消息后,必须有一个“方法”能够执行。若只是简单地继承一个类,并不做其他任何事情,来自基础类接口的方法就会直接照搬到衍生类。这意味着衍生类的对象不仅有相同的类型,也有同样的行为,这一后果通常是我们不愿见到的。
有两种做法可将新得的衍生类与原来的基础类区分开。第一种做法十分简单:为衍生类添加新函数(功能)。这是一种最简单、最基本的继承用法。第二种方法是:改善基础类,即类的重写和多态。在C++中,这个关键字是virtual。在Java中,我们则完全不必记住添加一个关键字,因为函数的动态绑定是自动进行的。
另外,上溯造型肯定是安全的,因为我们是从一个更特殊的类型到一个更常规的类型。换言之,衍生类是基础类的一个超集。它可以包含比基础类更多的方法,但它至少包含了基础类的方法。进行上溯造型的时候,类接口可能出现的唯一一个问题是它可能丢失方法,而不是赢得这些方法。这便是在没有任何明确的造型或者其他特殊标注的情况下,编译器为什么允许上溯造型的原因所在。
代码重用-合成与继承:
第一个最简单:在新类里简单地创建原有类的对象。我们把这种方法叫作“合成”,因为新类由现有类的对象合并而成。我们只是简单地重复利用代码的功能,而不是采用它的形式。
第二种方法就是继承。
无论合成还是继承,都允许我们将子对象置于自己的新类中。大家或许会奇怪两者间的差异,以及到底该如何选择。
如果想利用新类内部一个现有类的特性,而不想使用它的接口,通常应选择合成。也就是说,我们可嵌入一个对象,使自己能用它实现新类的特性。但新类的用户会看到我们已定义的接口,而不是来自嵌入对象的接口。考虑到这种效果,我们需在新类里嵌入现有类的private对象。有些时候,我们想让类用户直接访问新类的合成。也就是说,需要将成员对象的属性变为public。成员对象会将自身隐藏起来,所以这是一种安全的做法。而且在用户知道我们准备合成一系列组件时,接口就更容易理解。否则选择继承。
在面向对象的程序设计中,创建和使用代码最可能采取的一种做法是:将数据和方法统一封装到一个类里,并且使用那个类的对象。有些时候,需通过“合成”技术用现成的类来构造新类。而继承是最少见的一种做法。因此,尽管继承在学习OOP的过程中得到了大量的强调,但并不意味着应该尽可能地到处使用它。相反,使用它时要特别慎重。只有在清楚知道继承在所有方法中最有效的前提下,才可考虑它。为判断自己到底应该选用合成还是继承,一个最简单的办法就是考虑是否需要从新类上溯造型回基础类。若必须上溯,就需要继承。但如果不需要上溯造型,就应提醒自己防止继承的滥用。在下一章里(多形性),会向大家介绍必须进行上溯造型的一种场合。但只要记住经常问自己“我真的需要上溯造型吗”,对于合成还是继承的选择就不应该是个太大的问题。
对象的创建和存在时间:
最重要的问题之一是对象的创建及破坏方式。对象需要的数据位于哪儿,如何控制对象的“存在时间”呢?针对这个问题,解决的方案是各异其趣的。C++认为程序的执行效率是最重要的一个问题,所以它允许程序员作出选择。为获得最快的运行速度,存储以及存在时间可在编写程序时决定,只需将对象放置在堆栈(有时也叫作自动或定域变量)或者静态存储区域即可。这样便为存储空间的分配和释放提供了一个优先级。
第二个方法是在一个内存池中动态创建对象,该内存池亦叫“堆”或者“内存堆”。若采用这种方式,除非进入运行期,否则根本不知道到底需要多少个对象,也不知道它们的存在时间有多长,以及准确的类型是什么。由于存储空间的管理是运行期间动态进行的,所以在内存堆里分配存储空间的时间比在堆栈里创建的时间长得多。
C++允许我们决定是在写程序时创建对象,还是在运行期间创建,这种控制方法更加灵活。程序员可用两种方法来破坏一个对象:用程序化的方式决定何时破坏对象,或者利用由运行环境提供的一种“垃圾收集器”特性,自动寻找那些不再使用的对象,并将其清除。当然,垃圾收集器显得方便得多,但出于效率未能包括到C++里。但Java确实提供了一个垃圾收集器。
集合与继承器:
针对一个特定问题的解决,如果事先不知道需要多少个对象,或者它们的持续时间有多长,那么也不知道如何保存那些对象。既然如此,怎样才能知道那些对象要求多少空间呢?事先上根本无法提前知道,除非进入运行期。所以我们事先不必知道要在一个集合里容下多少东西。只需创建一个集合,以后的工作让它自己负责好了。在C++中,它们是以“标准模板库”(STL)的形式提供的。而Java也用自己的标准库提供了集合。
所有集合都提供了相应的读写功能。
单根结构:
在Java中(与其他几乎所有OOP语言一样),对这个问题的答案都是肯定的,而且这个终级基础类的名字很简单,就是一个“Object”。这种“单根结构”具有许多方面的优点。单根结构中的所有对象都有一个通用接口,所以它们最终都属于相同的类型。
另一种方案(就象C++那样)是我们不能保证所有东西都属于相同的基本类型。从向后兼容的角度看,这一方案可与C模型更好地配合,而且可以认为它的限制更少一些。但假期我们想进行纯粹的面向对象编程,那么必须构建自己的结构,以期获得与内建到其他OOP语言里的同样的便利。需添加我们要用到的各种新类库,还要使用另一些不兼容的接口。
JAVA单根结构中的所有对象都可以保证拥有一些特定的功能。在自己的系统中,我们知道对每个对象都能进行一些基本操作。一个单根结构,加上所有对象都在内存堆中创建,可以极大简化参数的传递(这在C++里是一个复杂的概念)。
利用单根结构,我们可以更方便地实现一个垃圾收集器。与此有关的必要支持可安装于基础类中,而垃圾收集器可将适当的消息发给系统内的任何对象。如果没有这种单根结构,而且系统通过一个句柄来操纵对象,那么实现垃圾收集器的途径会有很大的不同,而且会面临许多障碍。
由于运行期的类型信息肯定存在于所有对象中,所以永远不会遇到判断不出一个对象的类型的情况。这对系统级的操作来说显得特别重要,比如违例控制;而且也能在程序设计时获得更大的灵活性。
既然你把好处说得这么天花乱坠,为什么C++没有采用单根结构呢?事实上,这是早期在效率与控制上权衡的一种结果。单根结构会带来程序设计上的一些限制。而且更重要的是,它加大了新程序与原有C代码兼容的难度。尽管这些限制仅在特定的场合会真的造成问题,但为了获得最大的灵活程度,C++最终决定放弃采用单根结构这一做法。而Java不存在上述的问题,它是全新设计的一种语言,不必与现有的语言保持所谓的“向后兼容”。所以很自然地,与其他大多数面向对象的程序设计语言一样,单根结构在Java的设计方案中很快就落实下来。
集合库与方便使用集合-单根结构的便利
由于集合是我们经常都要用到的一种工具,所以一个集合库是十分必要的,它应该可以方便地重复使用
下溯造型与模板/通用性
为了使这些集合能够重复使用,或者“再生”,Java提供了一种通用类型,以前曾把它叫作“Object”。单根结构意味着、所有东西归根结底都是一个对象”!所以容纳了Object的一个集合实际可以容纳任何东西。这使我们对它的重复使用变得非常简便。为使用这样的一个集合,只需添加指向它的对象句柄即可,以后可以通过句柄重新使用对象。
但由于集合只能容纳Object,所以在我们向集合里添加对象句柄时,它会上溯造型成Object,这样便丢失了它的身份或者标识信息。再次使用它的时候,会得到一个Object句柄,而非指向我们早先置入的那个类型的句柄。所以怎样才能归还它的本来面貌,调用早先置入集合的那个对象的有用接口呢?在这里,我们再次用到了造型(Cast)。但这一次不是在分级结构中上溯造型成一种更“通用”的类型。而是下溯造型成一种更“特殊”的类型。这种造型方法叫作“下溯造型”(Downcasting)。举个例子来说,我们知道在上溯造型的时候,Circle(圆)属于Shape(几何形状)的一种类型,所以上溯造型是安全的。但我们不知道一个Object到底是Circle还是Shape,所以很难保证下溯造型的安全进行,除非确切地知道自己要操作的是什么。但这也不是绝对危险的,因为假如下溯造型成错误的东西,会得到我们称为“违例”(Exception)的一种运行期错误。但在从一个集合提取对象句柄时,必须用某种方式准确地记住它们是什么,以保证下溯造型的正确进行。下溯造型和运行期检查都要求花额外的时间来运行程序,而且程序员必须付出额外的精力。既然如此,我们能不能创建一个“智能”集合,令其知道自己容纳的类型呢?这样做可消除下溯造型的必要以及潜在的错误。答案是肯定的,我们可以采用“参数化类型”,它们是编译器能自动定制的类,可与特定的类型配合。例如,通过使用一个参数化集合,编译器可对那个集合进行定制,使其只接受Shape,而且只提取Shape。
参数化类型是C++一个重要的组成部分,这部分是C++没有单根结构的缘故。在C++中,用于实现参数化类型的关键字是template(模板)。Java目前尚未提供参数化类型,因为由于使用的是单根结构。
C++语言的设计者曾经向C程序员发出请求(而且做得非常成功),不要希望在可以使用C的任何地方,向语言里加入可能对C++的速度或使用造成影响的任何特性。这个目的达到了,但代价就是C++的编程不可避免地复杂起来。Java比C++简单,但付出的代价是效率以及一定程度的灵活性。但对大多数程序设计问题来说,Java无疑都应是我们的首选。
垃圾收集器:
在Java中,垃圾收集器在设计时已考虑到了内存的释放问题。垃圾收集器“知道”一个对象在什么时候不再使用,然后会自动释放那个对象占据的内存空间。采用这种方式,另外加上所有对象都从单个根类Object继承的事实,而且由于我们只能在内存堆中以一种方式创建对象,所以Java的编程要比C++的编程简单得多。我们只需要作出少量的抉择,即可克服原先存在的大量障碍。
既然这是如此好的一种手段,为什么在C++里没有得到充分的发挥呢?我们当然要为这种编程的方便性付出一定的代价,代价就是运行期的开销。正如早先提到的那样,在C++中,我们可在堆栈中创建对象。在这种情况下,对象会得以自动清除。在堆栈中创建对象是为对象分配存储空间最有效的一种方式,也是释放那些空间最有效的一种方式。在内存堆(Heap)中创建对象可能要付出昂贵得多的代价。如果总是从同一个基础类继承,并使所有函数调用都具有“同质多形”特征,那么也不可避免地需要付出一定的代价。但垃圾收集器是一种特殊的问题,因为我们永远不能确定它什么时候启动或者要花多长的时间。这意味着在Java程序执行期间,存在着一种不连贯的因素。所以在某些特殊的场合,我们必须避免用它——比如在一个程序的执行必须保持稳定、连贯的时候(通常把它们叫作“实时程序”,尽管并不是所有实时编程问题都要这方面的要求。
C++语言的设计者曾经向C程序员发出请求(而且做得非常成功),不要希望在可以使用C的任何地方,向语言里加入可能对C++的速度或使用造成影响的任何特性。这个目的达到了,但代价就是C++的编程不可避免地复杂起来。Java比C++简单,但付出的代价是效率以及一定程度的灵活性。但对大多数程序设计问题来说,Java无疑都应是我们的首选。
违例控制:解决错误
这里的“违例”(Exception)属于一个特殊的对象,它会从产生错误的地方“扔”或“掷”出来。随后,这个违例会被设计用于控制特定类型错误的“违例控制器”捕获。在情况变得不对劲的时候,可能有几个违例控制器并行捕获对应的违例对象。Java的违例控制机制与大多数程序设计语言都有所不同。因为在Java中,违例控制模块是从一开始就封装好的,所以必须使用它!如果没有自己写一些代码来正确地控制违例,就会得到一条编译期出错提示。这样可保证程序的连贯性,使错误控制变得更加容易。
多线程
许多程序设计问题都要求程序能够停下手头的工作,改为处理其他一些问题,再返回主进程。可以通过多种途径达到这个目的。最开始的时候,那些拥有机器低级知识的程序员编写一些“中断服务例程”,主进程的暂停是通过硬件级的中断实现的。尽管这是一种有用的方法,但编出的程序很难移植,由此造成了另一类的代价高昂问题。
最开始,线程只是用于分配单个处理器的处理时间的一种工具。但假如操作系统本身支持多个处理器,那么每个线程都可分配给一个不同的处理器,真正进入“并行运算”状态。从程序设计语言的角度看,多线程操作最有价值的特性之一就是程序员不必关心到底使用了多少个处理器。程序在逻辑意义上被分割为数个线程;假如机器本身安装了多个处理器,那么程序会运行得更快,毋需作出任何特殊的调校。
根据前面的论述,大家可能感觉线程处理非常简单。但必须注意一个问题:共享资源!如果有多个线程同时运行,而且它们试图访问相同的资源,就会遇到一个问题。举个例子来说,两个进程不能将信息同时发送给一台打印机。为解决这个问题,对那些可共享的资源来说(比如打印机),它们在使用期间必须进入锁定状态。所以一个线程可将资源锁定,在完成了它的任务后,再解开(释放)这个锁,使其他线程可以接着使用同样的资源。
Java的多线程机制已内建到语言中,这使一个可能较复杂的问题变得简单起来。对多线程处理的支持是在对象这一级支持的,所以一个执行线程可表达为一个对象。Java也提供了有限的资源锁定方案。它能锁定任何对象占用的内存(内存实际是多种共享资源的一种),所以同一时间只能有一个线程使用特定的内存空间。为达到这个目的,需要使用synchronized关键字。其他类型的资源必须由程序员明确锁定,这通常要求程序员创建一个对象,用它代表一把锁,所有线程在访问那个资源时都必须检查这把锁。
永久性:
创建一个对象后,只要我们需要,它就会一直存在下去。但在程序结束运行时,对象的“生存期”也会宣告结束。尽管这一现象表面上非常合理,但深入追究就会发现,假如在程序停止运行以后,对象也能继续存在,并能保留它的全部信息,那么在某些情况下将是一件非常有价值的事情。
JAVA WEB
客户机/服务器计算
客户机/服务器系统的基本思想是我们能在一个统一的地方集中存放信息资源。一般将数据集中保存在某个数据库中,根据其他人或者机器的请求将信息投递给对方。将各种元素集中到一起,信息仓库、用于投递信息的软件以及信息及软件所在的那台机器(Server)。然后在远程机器上显示出来,这些就叫作“客户”(Client)。
Web实际就是一套规模巨大的客户机/服务器系统。但它的情况要复杂一些,因为所有服务器和客户都同时存在于单个网络上面。但我们没必要了解更进一步的细节,因为唯一要关心的就是一次建立同一个服务器的连接,并同它打交道(即使可能要在全世界的范围内搜索正确的服务器)。
最开始的时候,这是一个简单的单向操作过程。我们向一个服务器发出请求,它向我们回传一个文件,由于本机的浏览器软件(亦即“客户”或“客户程序”)负责解释和格式化,并在我们面前的屏幕上正确地显示出来。但人们不久就不满足于只从一个服务器传递网页。
Web最初采用的“服务器-浏览器”方案可提供交互式内容,但这种交互能力完全由服务器提供,为服务器和因特网带来了不小的负担。服务器一般为客户浏览器产生静态网页,由后者简单地解释并显示出来。基本HTML语言提供了简单的数据收集机制:文字输入框、复选框、单选钮、列表以及下拉列表等,另外还有一个按钮,只能由程序规定重新设置表单中的数据,以便回传给服务器。用户提交的信息通过所有Web服务器均能支持的“通用网关接口”(CGI)回传到服务器。包含在提交数据中的文字指示CGI该如何操作。
今天的许多Web站点都严格地建立在CGI的基础上,事实上几乎所有事情都可用CGI做到。唯一的问题就是响应时间。CGI程序的响应取决于需要传送多少数据,以及服务器和因特网两方面的负担有多重(而且CGI程序的启动比较慢)。Web的早期设计者并未预料到当初绰绰有余的带宽很快就变得不够用,这正是大量应用充斥网上造成的结果。原来的方法是我们按下网页上的提交按钮(Submit);数据回传给服务器;服务器启动一个CGI程序,检查用户输入是否有错;格式化一个HTML页,通知可能遇到的错误,并将这个页回传给我们;随后必须回到原先那个表单页,再输入一遍。这种方法不仅速度非常慢,也显得非常繁琐。
解决的办法就是客户端的程序设计。运行Web浏览器的大多数机器都拥有足够强的能力,可进行其他大量工作。与此同时,原始的静态HTML方法仍然可以采用,它会一直等到服务器送回下一个页。客户端编程意味着Web浏览器可获得更充分的利用,并可有效改善Web服务器的交互(互动)能力。
脚本编制语言
插件造成了脚本编制语言的爆炸性增长。通过这种脚本语言,可将用于自己客户端程序的源码直接插入HTML页,而对那种语言进行解释的插件会在HTML页显示的时候自动激活。脚本语言一般都倾向于尽量简化,易于理解。而且由于它们是从属于HTML页的一些简单正文,所以只需向服务器发出对那个页的一次请求,即可非常快地载入。缺点是我们的代码全部暴露在人们面前。另一方面,由于通常不用脚本编制语言做过份复杂的事情,所以这个问题暂且可以放在一边。
脚本语言真正面向的是特定类型问题的解决,其中主要涉及如何创建更丰富、更具有互动能力的图形用户界面(GUI)。然而,脚本语言也许能解决客户端编程中80%的问题。你碰到的问题可能完全就在那80%里面。
如果说一种脚本编制语言能解决80%的客户端程序设计问题,那么剩下的20%又该怎么办呢?它们属于一些高难度的问题吗?目前最流行的方案就是Java。它不仅是一种功能强大、高度安全、可以跨平台使用以及国际通用的程序设计语言,也是一种具有旺盛生命力的语言。对Java的扩展是不断进行的,提供的语言特性和库能够很好地解决传统语言不能解决的问题,比如多线程操作、数据库访问、连网程序设计以及分布式计算等等。Java通过“程序片”(Applet)巧妙地解决了客户端编程的问题。
程序片(或“小应用程序”)是一种非常小的程序,只能在Web浏览器中运行。作为Web页的一部分,程序片代码会自动下载回来(这和网页中的图片差不多)。激活程序片后,它会执行一个程序。程序片的一个优点体现在:通过程序片,一旦用户需要客户软件,软件就可从服务器自动下载回来。它们能自动取得客户软件的最新版本,不会出错,也没有重新安装的麻烦。
安全
自动下载和通过因特网运行程序听起来就象是一个病毒制造者的梦想。在客户端的编程中,ActiveX带来了最让人头痛的安全问题。点击一个Web站点的时候,可能会随同HTML网页传回任何数量的东西:GIF文件、脚本代码、编译好的Java代码以及ActiveX组件。有些是无害的;GIF文件不会对我们造成任何危害,而脚本编制语言通常在自己可做的事情上有着很大的限制。Java也设计成在一个安全“沙箱”里在它的程序片中运行,这样可防止操作位于沙箱以外的磁盘或者内存区域。
ActiveX是所有这些里面最让人担心的。用ActiveX编写程序就象编制Windows应用程序——可以做自己想做的任何事情。下载回一个ActiveX组件后,它完全可能对我们磁盘上的文件造成破坏。
Java通过“沙箱”来防止这些问题的发生。Java解释器内嵌于我们本地的Web浏览器中,在程序片装载时会检查所有有嫌疑的指令。特别地,程序片根本没有权力将文件写进磁盘,或者删除文件(这是病毒最喜欢做的事情之一)。
Java/C++
Java特别象C++;由此很自然地会得出一个结论:C++似乎会被Java取代。但我对这个逻辑存有一些疑问。无论如何,C++仍有一些特性是Java没有的。而且尽管已有大量保证,
我感觉Java强大之处反映在与C++稍有不同的领域。C++是一种绝对不会试图迎合某个模子的语言。特别是它的形式可以变化多端,以解决不同类型的问题。人们对Java做了大量的工作,使它能方便程序员解决应用级问题(如连网和跨平台UI等),所以它在本质上允许人们创建非常大型和灵活的代码主体。同时,考虑到Java还拥有我迄今为止尚未在其他任何一种语言里见到的最“健壮”的类型检查及错误控制系统,所以Java确实能大大提高我们的编程效率。这一点是勿庸置疑的!
但对于自己某个特定的项目,真的可以不假思索地将C++换成Java吗?除了Web程序片,还有两个问题需要考虑。首先,假如要使用大量现有的库(这样肯定可以提高不少的效率),或者已经有了一个坚实的C或C++代码库,那么换成Java后,反映会阻碍开发进度,而不是加快它的速度。但若想从头开始构建自己的所有代码,那么Java的简单易用就能有效地缩短开发时间。
最大的问题是速度。在原始的Java解释器中,解释过的Java会比C慢上20到50倍。尽管经过长时间的发展,这个速度有一定程度的提高,但和C比起来仍然很悬殊。计算机最注重的就是速度;假如在一台计算机上不能明显较快地干活,那么还不如用手做(有人建议在开发期间使用Java,以缩短开发时间。然后用一个工具和支撑库将代码转换成C++,这样可获得更快的执行速度)。
一切都是对象
之所以说C++是一种杂合语言,是因为它支持与C语言的向后兼容能力。由于C++是C的一个超集,所以包含的许多特性都是后者不具备的,这些特性使C++在某些地方显得过于复杂。
Java语言首先便假定了我们只希望进行面向对象的程序设计。
用句柄操纵对象
尽管将一切都“看作”对象,但操纵的标识符实际是指向一个对象的“句柄”(Handle)。只是由于拥有一个句柄,并不表示必须有一个对象同它连接。所以如果想容纳一个词或句子,可创建一个String句柄:String
s;但这里创建的只是句柄,并不是对象。若此时向s发送一条消息,就会获得一个错误(运行期)。这是由于s实际并未与任何东西连接(即“没有电视机”)。因此,一种更安全的做法是:创建一个句柄时,记住无论如何都进行初始化:
String s = new String("asdf");
我们创建类时会指出那个类的对象的外观与行为。除非用new创建那个类的一个对象,否则实际上并未得到任何东西。只有执行了new后,才会正式生成数据存储空间,并可使用相应的方法。
在类内作为字段使用的基本数据会初始化成零,但对象句柄会初始化成null。而且假若试图为它们中的任何一个调用方法,就会产生一次“违例”。
编译器并不只是为每个句柄创建一个默认对象,因为那样会在许多情况下招致不必要的开销。如希望句柄得到初始化,可在下面这些地方进行:
(1)
在对象定义的时候。这意味着它们在构建器调用之前肯定能得到初始化。
(2) 在那个类的构建器中。
(3)
紧靠在要求实际使用那个对象之前。这样做可减少不必要的开销——假如对象并不需要创建的话。
保存到什么地方:
程序运行时,我们最好对数据保存到什么地方做到心中有数。特别要注意的是内存的分配。有六个地方都可以保存数据:
(1)
寄存器。这是最快的保存区域,因为它位于和其他所有保存方式不同的地方:处理器内部。然而,寄存器的数量十分有限,所以寄存器是根据需要由编译器分配。我们对此没有直接的控制权,也不可能在自己的程序里找到寄存器存在的任何踪迹。
(2)
堆栈。驻留于常规RAM(随机访问存储器)区域,但可通过它的“堆栈指针”获得处理的直接支持。堆栈指针若向下移,会创建新的内存;若向上移,则会释放那些内存。这是一种特别快、特别有效的数据保存方式,仅次于寄存器。创建程序时,Java编译器必须准确地知道堆栈内保存的所有数据的“长度”以及“存在时间”。这是由于它必须生成相应的代码,以便向上和向下移动指针。这一限制无疑影响了程序的灵活性,所以尽管有些Java数据要保存在堆栈里——特别是对象句柄,但Java对象并不放到其中。
(3)
堆。一种常规用途的内存池(也在RAM区域),其中保存了Java对象。和堆栈不同,“内存堆”或“堆”(Heap)最吸引人的地方在于编译器不必知道要从堆里分配多少存储空间,也不必知道存储的数据要在堆里停留多长的时间。因此,用堆保存数据时会得到更大的灵活性。要求创建一个对象时,只需用new命令编制相关的代码即可。执行这些代码时,会在堆里自动进行数据的保存。当然,为达到这种灵活性,必然会付出一定的代价:在堆里分配存储空间时会花掉更长的时间!
(4)
静态存储。这儿的“静态”(Static)是指“位于固定位置”(尽管也在RAM里)。程序运行期间,静态存储的数据将随时等候调用。可用static关键字指出一个对象的特定元素是静态的。但Java对象本身永远都不会置入静态存储空间。
(5)
常数存储。常数值通常直接置于程序代码内部。这样做是安全的,因为它们永远都不会改变。有的常数需要严格地保护,所以可考虑将它们置入只读存储器(ROM)。
(6)
非RAM存储。若数据完全独立于一个程序之外,则程序不运行时仍可存在,并在程序的控制范围之外。其中两个最主要的例子便是“流式对象”和“固定对象”。对于流式对象,对象会变成字节流,通常会发给另一台机器。而对于固定对象,对象保存在磁盘中。即使程序中止运行,它们仍可保持自己的状态不变。对于这些类型的数据存储,一个特别有用的技巧就是它们能存在于其他媒体中。一旦需要,甚至能将它们恢复成普通的、基于RAM的对象。Java
1.1提供了对Lightweight persistence的支持。未来的版本甚至可能提供更完整的方案。
Java决定了每种主要类型的大小。就象在大多数语言里那样,这些大小并不随着机器结构的变化而变化。这种大小的不可更改正是Java程序具有很强移植能力的原因之一。
基本类型:
可将它们想象成“基本”、“主”(Primitive)类型或者“内置”,进行程序设计时要频繁用到它们。之所以要特别对待,是由于用new创建对象(特别是小的、简单的变量)并不是非常有效,因为new将对象置于“堆”里。对于这些类型,Java采纳了与C和C++相同的方法。也就是说,不是用new创建变量,而是创建一个并非句柄的“自动”变量。这个变量容纳了具体的值,并置于堆栈中,能够更高效地存取。Java不允许我们创建本地(局部)对象——无论如何都要使用new。Java决定了每种主要类型的大小。就象在大多数语言里那样,这些大小并不随着机器结构的变化而变化。这种大小的不可更改正是Java程序具有很强移植能力的原因之一。
Java的数组:
在C和C++里使用数组是非常危险的,因为那些数组只是内存块。若程序访问自己内存块以外的数组,或者在初始化之前使用内存在C++里,应尽量不要使用数组,换用标准模板库(Standard
TemplateLibrary)里更安全的容器。
Java的一项主要设计目标就是安全性。所以在C和C++里困扰程序员的许多问题都未在Java里重复。一个Java可以保证被初始化,而且不可在它的范围之外访问。创建对象数组时,实际创建的是一个句柄数组。而且每个句柄都会自动初始化成一个特殊值,并带有自己的关键字:null(空)。一旦Java看到null,就知道该句柄并未指向一个对象。正式使用前,必须为每个句柄都分配一个对象。若试图使用依然为null的一个句柄,就会在运行期报告问题。因此,典型的数组错误在Java里就得到了避免。也可以创建主类型数组。同样地,编译器能够担保对它的初始化,因为会将那个数组的内存划分成零。
对象的作用域:
Java对象不具备与主类型一样的存在时间。用new关键字创建一个Java对象的时候,它会超出作用域的范围之外。所以假若使用下面这段代码:
{
String
s = new String("a string");
} /* 作用域的终点
*/
那么句柄s会在作用域的终点处消失。然而,s指向的String对象依然占据着内存空间。在上面这段代码里,我们没有办法访问对象,因为指向它的唯一一个句柄已超出了作用域的边界。在后面的章节里,大家还会继续学习如何在程序运行期间传递和复制对象句柄。
这样造成的结果便是:对于用new创建的对象,只要我们愿意,它们就会一直保留下去。这个编程问题在C和C++里特别突出。看来在C++里遇到的麻烦最大:由于不能从语言获得任何帮助,所以在需要对象的时候,根本无法确定它们是否可用。而且更麻烦的是,在C++里,一旦工作完成,必须保证将对象清除。
这样便带来了一个有趣的问题。假如Java让对象依然故我,怎样才能防止它们大量充斥内存,并最终造成程序的“凝固”呢。在C++里,这个问题最令程序员头痛。但Java以后,情况却发生了改观。Java有一个特别的“垃圾收集器”,它会查找用new创建的所有对象,并辨别其中哪些不再被引用。随后,它会自动释放由那些闲置对象占据的内存,以便能由新对象使用。这意味着我们根本不必操心内存的回收问题。只需简单地创建对象,一旦不再需要它们,它们就会自动离去。这样做可防止在C++里很常见的一个编程问题:由于程序员忘记释放内存造成的“内存溢出”。
static关键字:
创建类时会指出那个类的对象的外观与行为。除非用new创建那个类的一个对象,否则实际上并未得到任何东西。只有执行了new后,才会正式生成数据存储空间,并可使用相应的方法。
但在两种特殊的情形下,上述方法并不堪用。一种情形是只想用一个存储区域来保存一个特定的数据——无论要创建多少个对象,甚至根本不创建对象。另一种情形是我们需要一个特殊的方法,它没有与这个类的任何对象关联。也就是说,即使没有创建对象,也需要一个能调用的方法。为满足这两方面的要求,
finalize()用途何在:
此时,大家可能已相信了自己应该将finalize()作为一种常规用途的清除方法使用。它有什么好处呢?
要记住的第三个重点是:垃圾收集只跟内存有关!
也就是说,垃圾收集器存在的唯一原因是为了回收程序不再使用的内存。所以对于与垃圾收集有关的任何活动来说,其中最值得注意的是finalize()方法,它们也必须同内存以及它的回收有关。
但这是否意味着假如对象包含了其他对象,finalize()就应该明确释放那些对象呢?答案是否定的——垃圾收集器会负责释放所有对象占据的内存,无论这些对象是如何创建的。它将对finalize()的需求限制到特殊的情况。在这种情况下,我们的对象可采用与创建对象时不同的方法分配一些存储空间。但大家或许会注意到,Java中的所有东西都是对象,所以这到底是怎么一回事呢?
之所以要使用finalize(),看起来似乎是由于有时需要采取与Java的普通方法不同的一种方法,通过分配内存来做一些具有C风格的事情。这主要可以通过“固有方法”来进行,它是从Java里调用非Java方法的一种方式(固有方法的问题在附录A讨论)。C和C++是目前唯一获得固有方法支持的语言。但由于它们能调用通过其他语言编写的子程序,所以能够有效地调用任何东西。在非Java代码内部,也许能调用C的malloc()系列函数,用它分配存储空间。而且除非调用了free(),否则存储空间不会得到释放,从而造成内存“漏洞”的出现。当然,free()是一个C和C++函数,所以我们需要在finalize()内部的一个固有方法中调用它。
读完上述文字后,大家或许已弄清楚了自己不必过多地使用finalize()。这个思想是正确的;它并不是进行普通清除工作的理想场所。那么,普通的清除工作应在何处进行呢?
多态-绑定:
方法调用的绑定
将一个方法调用同一个方法主体连接到一起就称为“绑定”(Binding)。若在程序运行以前执行绑定(由编译器和链接程序,如果有的话),就叫作“早期绑定”。C编译器只有一种方法调用,那就是“早期绑定”。
“后期绑定”,它意味着绑定在运行期间进行,以对象的类型为基础。后期绑定也叫作“动态绑定”。若一种语言实现了后期绑定,同时必须提供一些机制,可在运行期间判断对象的类型,并分别调用适当的方法。也就是说,编译器此时依然不知道对象的类型,但方法调用机制能自己去调查,找到正确的方法主体。不同的语言对后期绑定的实现方法是有所区别的。但我们至少可以这样认为:它们都要在对象中安插某些特殊类型的信息。
Java中绑定的所有方法都采用后期绑定技术,除非一个方法已被声明成final。这意味着我们通常不必决定是否应进行后期绑定——它是自动发生的。
为什么要把一个方法声明成final呢?正如上一章指出的那样,它能防止其他人覆盖那个方法。但也许更重要的一点是,它可有效地“关闭”动态绑定,或者告诉编译器不需要进行动态绑定。这样一来,编译器就可为final方法调用生成效率更高的代码。
抽象类-方法及接口:
有些方法的作用仅仅是表达接口,而不是表达一些具体的实施细节。Java专门提供了一种机制,名为“抽象方法”。它属于一种不完整的方法,只含有一个声明,没有方法主体。下面是抽象方法声明时采用的语法:
abstract
void
X();
包含了抽象方法的一个类叫作“抽象类”。如果一个类里包含了一个或多个抽象方法,类就必须指定成abstract(抽象)。否则,编译器会向我们报告一条出错消息。
若一个抽象类是不完整的,那么一旦有人试图生成那个类的一个对象,编译器又会采取什么行动呢?由于不能安全地为一个抽象类创建属于它的对象,所以会从编译器那里获得一条出错提示。通过这种方法,编译器可保证抽象类的“纯洁性”,我们不必担心会误用它。如果从一个抽象类继承,而且想生成新类型的一个对象,就必须为基础类中的所有抽象方法提供方法定义。如果不这样做(完全可以选择不做),则衍生类也会是抽象的,而且编译器会强迫我们用abstract关键字标志那个类的“抽象”本质。即使不包括任何abstract方法,亦可将一个类声明成“抽象类”。如果一个类没必要拥有任何抽象方法,而且我们想禁止那个类的所有实例,这种能力就会显得非常有用。
所以在实现一个接口的时候,来自接口的方法必须定义成public。否则的话,它们会默认为“友好的”,而且会限制我们在继承过程中对一个方法的访问——Java编译器不允许我们那样做。
接口只是比抽象类“更纯”的一种形式。它的用途并不止那些。由于接口根本没有具体的实施细节——也就是说,没有与存储空间与“接口”关联在一起——所以没有任何办法可以防止多个接口合并到一起。这一点是至关重要的,因为我们经常都需要表达这样一个意思:“x从属于a,也从属于b,也从属于c”。在C++中,将多个类合并到一起的行动称作“多重继承”,而且操作较为不便,因为每个类都可能有一套自己的实施细节。在Java中,我们可采取同样的行动,但只有其中一个类拥有具体的实施细节。所以在合并多个接口的时候,C++的问题不会在Java中重演。
在一个衍生类中,我们并不一定要拥有一个抽象或具体(没有抽象方法)的基础类。如果确实想从一个非接口继承,那么只能从一个继承。剩余的所有基本元素都必须是“接口”。我们将所有接口名置于implements关键字的后面,并用逗号分隔它们。可根据需要使用多个接口,而且每个接口都会成为一个独立的类型,可对其进行上溯造型形成多态。
使用接口最重要的一个原因:能上溯造型至多个基础类。使用接口的第二个原因与使用抽象基础类的原因是一样的:防止客户程序员制作这个类的一个对象,以及规定它仅仅是一个接口。这样便带来了一个问题:到底应该使用一个接口还是一个抽象类呢?若使用接口,我们可以同时获得抽象类以及接口的好处。所以假如想创建的基础类没有任何方法定义或者成员变量,那么无论如何都愿意使用接口,而不要选择抽象类。事实上,如果事先知道某种东西会成为基础类,那么第一个选择就是把它变成一个接口。只有在必须使用方法定义或者成员变量的时候,才应考虑采用抽象类。
抽象类与接口设计层面上的区别
1)抽象类是对一种事物的抽象,即对类抽象,而接口是对行为的抽象。抽象类是对整个类整体进行抽象,包括属性、行为,但是接口却是对类局部(行为)进行抽象。举个简单的例子,飞机和鸟是不同类的事物,但是它们都有一个共性,就是都会飞。那么在设计的时候,可以将飞机设计为一个类Airplane,将鸟设计为一个类Bird,但是不能将 飞行 这个特性也设计为类,因此它只是一个行为特性,并不是对一类事物的抽象描述。此时可以将 飞行 设计为一个接口Fly,包含方法fly( ),然后Airplane和Bird分别根据自己的需要实现Fly这个接口。然后至于有不同种类的飞机,比如战斗机、民用飞机等直接继承Airplane即可,对于鸟也是类似的,不同种类的鸟直接继承Bird类即可。从这里可以看出,继承是一个 "是不是"的关系,而 接口 实现则是 "有没有"的关系。如果一个类继承了某个抽象类,则子类必定是抽象类的种类,而接口实现则是有没有、具备不具备的关系,比如鸟是否能飞(或者是否具备飞行这个特点),能飞行则可以实现这个接口,不能飞行就不实现这个接口。
2)设计层面不同,抽象类作为很多子类的父类,它是一种模板式设计。而接口是一种行为规范,它是一种辐射式设计。什么是模板式设计?最简单例子,大家都用过ppt里面的模板,如果用模板A设计了ppt B和ppt C,ppt B和ppt C公共的部分就是模板A了,如果它们的公共部分需要改动,则只需要改动模板A就可以了,不需要重新对ppt B和ppt C进行改动。而辐射式设计,比如某个电梯都装了某种报警器,一旦要更新报警器,就必须全部更新。也就是说对于抽象类,如果需要添加新的方法,可以直接在抽象类中添加具体的实现,子类可以不进行变更;而对于接口则不行,如果接口进行了变更,则所有实现这个接口的类都必须进行相应的改动。
JAVA THINGKING (一)的更多相关文章
- JAVA THINGKING (二)随笔
1. 基本数据员的默认值 Boolean false Char '\u0000'(null) byte (byte)0 short (short)0 int 0 long 0L float 0.0 ...
- Spark案例分析
一.需求:计算网页访问量前三名 import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} /* ...
- 20170527关于Thingking in Java
由于工作上的需求,要开始学习Android开发,所以先开始看一些Java方面的知识.学习从Thingking in Java开始,看了一下第一张,感觉真的是一本好书,希望自己努力把他看完,加油! 第一 ...
- java的finalize()函数
在说明finalize()的用法之前要树立有关于java垃圾回收器几个观点: "对象可以不被垃圾回收" : java的垃圾回收遵循一个特点, 就是能不回收就不会回收.只要程序的内存 ...
- JAVA多线程经典问题 -- 生产者 消费者
工作2年多来一直也没有计划写自己的技术博客,最近辞职在家翻看<thingking in JAVA>,偶尔看到了生产者与消费者的一个经典的多线程同步问题.本人在工作中很少使用到多线程以及高并 ...
- Java Knowledge series 2
JVM Analysis & Design The object-oriented paradigm is a new and different way of thingking about ...
- java涉及父子类的异常
java中的异常涉及到父子类的问题,可以归纳为一句话:子类的构造函数抛出的异常必须包含父类的异常,子类的方法可以选择抛出“范围小于等于”父类的异常或不抛出异常. 1. 为什么构造函数必须抛出包含父类的 ...
- java接口的一些想法
最近一直在闷头往前看<thingking in java> ,但是却由于赶了进度而忘记了初衷.当学到集合的时候,回头却发现,我连最基本的接口都不明白.查了一上午资料,现在明白例如一点点,写 ...
- 有关java构造器的笔记
当程序中首次出现使用一个类A时, 无论是使用A的静态成员还是创建一个对象(声明一个A类对象不算), 那么类加载器就会首先对A进行加载, 在对A进行加载的过程中, 如果A有一个extends的父类B, ...
随机推荐
- 《UNIX-Shell编程24学时教程》读书笔记Chap3,4 文件,目录操作
Chap3 文件操作 P28 在这章中,要着重记住一些常用的选项,要有使用正则表达式的思维,能更快达到目的.----@im天行 3.1 列文件名 .profile sh的初始化脚本: .kshr ...
- Ffmpeg 获取USB Camera 视频流
本文讲述的案例是如何通过Ffmpeg实现从USB Camera中获取视频流并将视频流保存到MP4文件. 本文亦适用于从USB Camera 获取视频流并将视频流转发到rtmp服务的案例,二者基本的原理 ...
- 函数式编程( Functional)与命令式编程( Imperative)对比
1.函数式编程带来的好处 函数式编程近些年异军突起,又重新回到了人们的视线,并得到蓬勃发展.总结起来,无外乎如下好处: 1.减少了可变量(Immutable Variable)的声明,程序更为安全. ...
- sql time 比较
数据字段为varchar类型的,格式:20110228 151010想进行时间比较,搜索一个范围内的时间select * from table where ' 20120102' <`time ...
- struts2上传图片超过大小给出错误提示
struts2上传图片超过大小给出错误提示 今天碰到上传图片太大,上传不上去返回input视图的界面,回显的错误信息却是乱码,整了好久才整出来,在这里做个记录,方便自己以后查阅,也希望能 ...
- 一起学android之怎样卸载指定的 应用程序(25)
效果图例如以下: 代码例如以下: public class MainActivity extends Activity { private Button btn_delete; @Override p ...
- C语言,简单计算器【上】
由于工作需要最近在研究PHP扩展,无可避免的涉及到了C语言.从出了学校以后C语言在实际工作中还没有用到过,所以必须要先进行一点复习工作.个人认为对于熟悉一样东西说最好的方法是上手实践.于是便想起了当时 ...
- HDFS被设计成能够在一个大集群中跨机器可靠地存储超大文件
HDFS被设计成能够在一个大集群中跨机器可靠地存储超大文件.它将每个文件存储成一系列的数据块,除了最后一个,所有的数据块都是同样大小的.为了容错,文件的所有数据块都会有副本.每个文件的数据块大小和副本 ...
- Kotlin基本语法笔记之函数、变量的定义及null检测
定义函数 fun sum(a: Int, b: Int): Int { return a + b } 该函数中两个参数的类型都是Int,返回类型是Int 也可以做如下简化 fun sum(a: Int ...
- [haoi2011]a
一次考试共有n个人参加,第i个人说:“有ai个人分数比我高,bi个人分数比我低.”问最少有几个人没有说真话(可能有相同的分数) 题解:首先,由每个人说的话的内容,我们可以理解为他处在ai+1,n-bi ...