题意:有一棵n个点的形态不定的树,每个度为i的节点会使树的权值增加f[i],求树的最大权值

n<=2015,0<=f[i]<=1e4

思路:对不起队友,我再强一点就能赛中出这题了

显然每个点的度至少为1,且度数为1的节点至少有2个(From 队友)

有一个结论:给每个点都分配1个度,剩余的度任意分配,一定能构造出对应的方案

仔细想想题面里的生成树数量不就在暗示我有类似Prufer序的性质么……序列与构造一一对应……唉太菜了

然后就是经典的完全背包问题了

每个点分配一个度之后还剩余n-2个度,每个点的分配到1之后多出来的度是[0,n-2]

 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<map>
#include<set>
#include<bitset>
#include<queue>
#include<stack>
using namespace std;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef vector<int> VI;
#define fi first
#define se second
#define MP make_pair
#define N 2100
#define M 110000
#define eps 1e-8
#define pi acos(-1)
#define oo 1000000000
#define MOD 10007 int a[N],f[N],dp[N]; int main()
{
//freopen("hdoj5534.in","r",stdin);
//freopen("hdoj5534.out","w",stdout);
int cas;
scanf("%d",&cas);
for(int v=;v<=cas;v++)
{
int n;
scanf("%d",&n);
for(int i=;i<n;i++) scanf("%d",&a[i]);
for(int i=;i<n;i++) f[i-]=a[i]-a[];
int m=n-;
memset(dp,,sizeof(dp));
dp[]=n*a[];
for(int i=;i<=m;i++)
for(int j=;j<=i;j++) dp[i]=max(dp[i],dp[i-j]+f[j]);
printf("%d\n",dp[m]);
}
return ;
}

【HDOJ5534】Partial Tree(树,背包DP)的更多相关文章

  1. HDU 5534 Partial Tree 完全背包

    一棵树一共有2*(n-1)度,现在的任务就是将这些度分配到n个节点,使这n个节点的权值和最大. 思路:因为这是一棵树,所以每个节点的度数都是大于1的,所以事先给每个节点分配一度,答案 ans=f[1] ...

  2. 【bzoj4987】Tree 树形背包dp

    题目描述 从前有棵树. 找出K个点A1,A2,…,Ak. 使得∑dis(AiAi+1),(1<=i<=K-1)最小. 输入 第一行两个正整数n,k,表示数的顶点数和需要选出的点个数. 接下 ...

  3. poj2486--Apple Tree(树状dp)

    Apple Tree Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7789   Accepted: 2606 Descri ...

  4. HDU 5534 Partial Tree (完全背包变形)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5534 题意: 给你度为1 ~ n - 1节点的权值,让你构造一棵树,使其权值和最大. 思路: 一棵树上 ...

  5. HDU-5534 Partial Tree 完全背包 设定初始选择

    题目链接:https://cn.vjudge.net/problem/HDU-5534 题意 放学路上看到n个节点,突然想把这几个节点连成一颗树. 树上每个节点有一个清凉度,清凉度是一个关于节点度的函 ...

  6. POJ 2486 Apple Tree ( 树型DP )

    #include <iostream> #include <cstring> #include <deque> using namespace std; #defi ...

  7. POJ 2486 Apple Tree [树状DP]

    题目:一棵树,每个结点上都有一些苹果,且相邻两个结点间的距离为1.一个人从根节点(编号为1)开始走,一共可以走k步,问最多可以吃多少苹果. 思路:这里给出数组的定义: dp[0][x][j] 为从结点 ...

  8. CodeForces 160D - Distance in Tree 树型DP

    题目给了512MB的空间....用dp[k][i]代表以k为起点...往下面走(走直的不打岔)i步能有多少方案....在更新dp[k][i]过程中同时统计答案.. Program: #include& ...

  9. Codeforces 461B - Appleman and Tree 树状DP

    一棵树上有K个黑色节点,剩余节点都为白色,将其划分成K个子树,使得每棵树上都仅仅有1个黑色节点,共同拥有多少种划分方案. 个人感觉这题比較难. 如果dp(i,0..1)代表的是以i为根节点的子树种有0 ...

  10. Codeforces 161D Distance in Tree(树型DP)

    题目链接 Distance in Tree $k <= 500$ 这个条件十分重要. 设$f[i][j]$为以$i$为子树,所有后代中相对深度为$j$的结点个数. 状态转移的时候,一个结点的信息 ...

随机推荐

  1. SVN不显示状态图标

    1,输入win+R,输入regedit,调出注册表信息 2,按下Ctrl+F,在注册表里搜索“ShellIconOverlayIdentifiers” 3,将TortoiseAdded.Tortois ...

  2. 基于Qt Creator实现中国象棋人机对战, c++实现

    GitHub地址: https://github.com/daleyzou/wobuku 这是自己大一学完c++后,在课程实践中写过的一个程序,实现象棋人机对战的算法还是有点难的, 自己当时差不多也是 ...

  3. 第29题:LeetCode54:Spiral Matrix螺旋矩阵

    给定一个包含 m x n 个元素的矩阵(m 行, n 列),请按照顺时针螺旋顺序,返回矩阵中的所有元素. 示例 1: 输入: [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ...

  4. 【luogu题解】P1546 最短网络 Agri-Net

    题目 约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其他农场.为了用最小的消费,他想铺设最短的光纤去连接所有的农场. 你将得到一份各农场之间连接费用的列表,你必须找出能连接所有农场并 ...

  5. Bzoj 1081 [Ahoi2009] chess 中国象棋

    bzoj 1081 [Ahoi2009] chess 中国象棋 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1801 状态比较难设,的确 ...

  6. git 命令汇总

    本地库处理 git init 初始化仓库 git clone [地址] 下载项目 git status 查看当前暂存等状态 git add 添加暂存 cat .git/config 查看git配置 l ...

  7. 五、Shell 基本运算符

    Shell 基本运算符 Shell 和其他编程语言一样,支持多种运算符,包括: 算数运算符 关系运算符 布尔运算符 字符串运算符 文件测试运算符 原生bash不支持简单的数学运算,但是可以通过其他命令 ...

  8. Linux监控一之Nagios的安装与配置

    一.Nagios简介 Nagios是一款开源的电脑系统和网络监视工具,能有效监控Windows.Linux和Unix的主机状态,交换机路由器等网络设置,打印机等.在系统或服务状态异常时发出邮件或短信报 ...

  9. 【CSS】css控制模块到顶层或底层

    举例子,分别有div1和div2现要把div1控制在div2的顶层,可以这样做: } div.div2{} 两个要点:一.设置div的position为absolute,即绝对定位.二.z-index ...

  10. kafka及扩展的安装笔记

    参考文件 https://blog.csdn.net/weiwenjuan0923/article/details/76152744 一.首先确认下jdk有没有安装 安装参照这个连接 https:// ...