\[ \text{给定正整数N,求} LCM \lbrace C \left(N , 0 \right),C\left(N , 1 \right),...,C\left(N , N \right) \rbrace \% mod \qquad 1\leq N \leq 10^6
\]

  • 题解

    • 根据规律推出公式,另外关于这个公式的证明

      \[ LCM \lbrace C \left(N , 0 \right),C\left(N , 1 \right),...,C\left(N , N \right) \rbrace \quad = \quad \frac{LCM(1,2,3...,N+1)}{N+1}
      \]

    • 由于数据规模较大,除法取模可以化为求乘以N+1在模mod意义下的逆元再取模,问题就转化为了如何求连续自然数的LCM

    • 由唯一分解定理可知LCM算法:

    \[ X_1 = P_1^{e_1}*P_2^{e_2}*...*P_k^{e_k} \quad \\
    X_2 = P_1^{e_1'}*P_2^{e_2'}*...*P_k^{e_k'} \quad \\
    \text{$k$ $\to$ ∞ $\quad$ $P_i$ is a prime number} \\
    \text{}\\
    LCM(X_1,X2) = P_1^{max(e_1,e_1')} * P_2^{max(e_2,e_2')} *...* P_k^{max(e_k,e_k')}
    \]

    • 不妨设LCM[i]表示从1到i的lcm,则LCM[i+1]与LCM[i]的关系为

\[LCM \left[ i\right] =
\begin{cases}
LCM[i-1]*i\%mod, & \text{if $i$ is a prime number, because a new prime come in} \\[2ex]
LCM[i-1]*x\%mod, & \text{if $n$ is a POWER of prime number x, because $P_x$ get a high power }\\[2ex]
LCM[i-1], & \text{oherwise}
\end{cases}
\]

  • AC代码
#include<iostream>
#include<vector>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
using namespace std;
typedef long long ll;
const int maxn = 1e6+10;
const ll mod = 1e9+7;
ll LCM[maxn];
bool isPrime[maxn];//isPrime[i]表示i是不是质数
int prime[maxn];//prime[i]表示i是哪个质数的k次幂 如果不是某个质数的k次幂就置0
void init(){
for(int i=1; i<maxn; i++) isPrime[i] = 1, prime[i] = 0;
isPrime[1] = 0;
//素数普通筛 只需要筛到根号N即可
for(int i=2; i*i<maxn; i++){
if(isPrime[i]){
///cout<<i<<" ";
for(int j=i*i; j<maxn; j *= i){
prime[j] = i;//j 是 质数i的幂次
}
//筛素数
for(int j=i+i; j<maxn; j += i){
isPrime[j] = 0;
}
}
}
}
//LCM[i]表示(1 , 2 , 3 ......, i)的lcm
void getLCM(){
LCM[1] = 1;
for(int i=2; i<maxn; i++){
//如果是一个新质数
if(isPrime[i]) LCM[i] = LCM[i-1] * i % mod;
//如果不是质数 验证是不是一个质数的幂次
//如果是 那么说明遇到了一个质因子更高的幂次 那么要多乘一个这个质因子
else if(prime[i]) LCM[i] = LCM[i-1] * prime[i] % mod;
else LCM[i] = LCM[i-1];
} }
//扩展欧几里得求逆元
void extgcd(ll a,ll b,ll& d,ll& x,ll& y){
if(!b){ d=a; x=1; y=0;}
else{ extgcd(b,a%b,d,y,x); y-=x*(a/b); }
}
//返回a在模n意义下的逆元
ll inverse(ll a,ll n){
ll d,x,y;
extgcd(a,n,d,x,y);
return d==1?(x+n)%n:-1;
} int main(){
int t;
ll n;
init();
getLCM();
cin>>t;
while(t--){
cin>>n;
ll ans = LCM[n+1] * inverse(n+1 , mod) % mod;
cout<<ans<<endl; }
return 0;
}

CRB and Candies LCM 性质的更多相关文章

  1. HDU 5407 CRB and Candies(LCM +最大素因子求逆元)

    [题目链接]pid=5407">click here~~ [题目大意]求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值 [思路]来图更直观: 这个究竟是怎样推出的.说实话 ...

  2. HDU5407 CRB and Candies 【LCM递推】

    HDU5407 CRB and Candies 题意: 计算\(LCM(C(n,0),C(n,1),C(n,2),\cdots,C(n,n-1),C(n,n))\) \(n\le 10^6\) 题解: ...

  3. Hdu 5407 CRB and Candies (找规律)

    题目链接: Hdu 5407 CRB and Candies 题目描述: 给出一个数n,求lcm(C(n,0),C[n,1],C[n-2]......C[n][n-2],C[n][n-1],C[n][ ...

  4. HDU 5407——CRB and Candies——————【逆元+是素数次方的数+公式】

    CRB and Candies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  5. 2015 Multi-University Training Contest 10 hdu 5407 CRB and Candies

    CRB and Candies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  6. 【HDOJ 5407】 CRB and Candies (大犇推导

    pid=5407">[HDOJ 5407] CRB and Candies 赛后看这题题解仅仅有满眼的迷茫------ g(N) = LCM(C(N,0),C(N,1),...,C(N ...

  7. LCM性质 + 组合数 - HDU 5407 CRB and Candies

    CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...

  8. CRB and Candies(组合数学+求逆元+lcm)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5407 题目: Problem Description CRB has N different cand ...

  9. hdu 5407【LCM性质】+【逆元】(结论题)

    <题目链接> <转载于 >>> > Problem Description CRB has N different candies. He is going ...

随机推荐

  1. 关于前后端日期处理 开发注意事项 jquery.tmpl()函数的使用

    1当后端将日期传到前段的时候 我们通常会需要将日期转为制定格式 除了平常我们使用的前段插件将日期转好 spring @datetimeFormat 注解 这些形式外 我们还可以在实体里通过get方法进 ...

  2. MySQL基础3-SQL语言

    1.DQL语句分类 重点在于Select语句 2.Sql语句的书写规则 3.怎样使用Navicat导入已经写好的sql文件 (1)在Navicat中右击选中的数据库 (2)将sql文件所在的路径添加进 ...

  3. 33、Android Support兼容包详解(转载)

    原文转自:微信分享 2015-03-31 22:11 背景 来自于知乎上邀请回答的一个问题Android中AppCompat和Holo的一个问题?, 看来很多人还是对这些兼容包搞不清楚,那么干脆写篇博 ...

  4. 【Luogu P1661】扩散

    题目: 一个点每过一个单位时间就会向四个方向扩散一个距离,如图. 两个点$a$.$b$连通,记作$e(a,b)$,当且仅当$a$.$b$的扩散区域有公共部分.连通块的定义是块内的任意两个点$u$.$v ...

  5. c语言入门-02-第一个c程序开始

    我们来开我们第一个c代码 #include<stdio.h> int main(){ // print num int num; num = 1; printf("%d\n&qu ...

  6. 基于 <tx> 和 <aop> 命名空间的声明式事务管理

    环境配置 项目使用SSH架构,现在要添加Spring事务管理功能,针对当前环境,只需要添加Spring 2.0 AOP类库即可.添加方法: 点击项目右键->Build Path->Add ...

  7. mysql-Innodb事务隔离级别-repeatable read详解

    http://blog.csdn.net/dong976209075/article/details/8802778 经验总结: Python使用MySQLdb数据库后,如使用多线程,每个线程创建一个 ...

  8. 【bzoj2406】矩阵 二分+有上下界可行流

    题目描述 输入 第一行两个数n.m,表示矩阵的大小. 接下来n行,每行m列,描述矩阵A. 最后一行两个数L,R. 输出 第一行,输出最小的答案: 样例输入 2 2 0 1 2 1 0 1 样例输出 1 ...

  9. hdu3586 Information Disturbing 【树形dp】

    题目链接 hdu3586 题解 二分 + 简单的树形dp 我正有练一下dp的必要了 #include<iostream> #include<cstdio> #include&l ...

  10. 短文对话的神经反应机 -- Neural Responding Machine for Short-Text Conversation学习笔记

    最近学习了一篇ACL会议上的文章,讲的是做一个短文对话的神经反映机, 原文: 会议:ACL(2015) 文章条目:    Lifeng Shang, Zhengdong Lu, Hang Li: Ne ...