BZOJ1797 [Ahoi2009]Mincut 最小割 【最小割唯一性判定】
题目
A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路。设其中第i (1≤i≤M)条道路连接了vi,ui两个中转站,那么中转站vi可以通过该道路到达ui中转站,如果切断这条道路,需要代价ci。现在B国想找出一个路径切断方案,使中转站s不能到达中转站t,并且切断路径的代价之和最小。 小可可一眼就看出,这是一个求最小割的问题。但爱思考的小可可并不局限于此。现在他对每条单向道路提出两个问题: 问题一:是否存在一个最小代价路径切断方案,其中该道路被切断? 问题二:是否对任何一个最小代价路径切断方案,都有该道路被切断? 现在请你回答这两个问题。
输入格式
第一行有4个正整数,依次为N,M,s和t。第2行到第(M+1)行每行3个正 整数v,u,c表示v中转站到u中转站之间有单向道路相连,单向道路的起点是v, 终点是u,切断它的代价是c(1≤c≤100000)。 注意:两个中转站之间可能有多条道路直接相连。 同一行相邻两数之间可能有一个或多个空格。
输出格式
对每条单向边,按输入顺序,依次输出一行,包含两个非0即1的整数,分 别表示对问题一和问题二的回答(其中输出1表示是,输出0表示否)。 同一行相邻两数之间用一个空格隔开,每行开头和末尾没有多余空格。
输入样例
6 7 1 6
1 2 3
1 3 2
2 4 4
2 5 1
3 5 5
4 6 2
5 6 3
输出样例
1 0
1 0
0 0
1 0
0 0
1 0
1 0
提示
设第(i+1)行输入的边为i号边,那么{1,2},{6,7},{2,4,6}是仅有的三个最小代价切割方案。它们的并是{1,2,4,6,7},交是 。 【数据规模和约定】 测试数据规模如下表所示 数据编号 N M 数据编号 N M 1 10 50 6 1000 20000 2 20 200 7 1000 40000 3 200 2000 8 2000 50000 4 200 2000 9 3000 60000 5 1000 20000 10 4000 60000
2015.4.16新加数据一组,可能会卡掉从前可以过的程序。
题解
先跑最大流求出任意一个最小割
对残量网络缩点
然后对于一条满流的边(u,v)
①Scc[u]!=Scc[v],存在(u,v)被割的方案
②Scc[u]Scc[S]&&Scc[v]Scc[T],(u,v)必定被割
jcvb:
在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号。显然有id[s]!=id[t](否则s到t有通路,能继续增广)。
①对于任意一条满流边(u,v),(u,v)能够出现在某个最小割集中,当且仅当id[u]!=id[v];
②对于任意一条满流边(u,v),(u,v)必定出现在最小割集中,当且仅当id[u]id[s]且id[v]id[t]。
①
<将每个SCC缩成一个点,得到的新图就只含有满流边了。那么新图的任一s-t割都对应原图的某个最小割,从中任取一个把id[u]和id[v]割开的割即可证明。
②
<:假设将(u,v)的边权增大,那么残余网络中会出现s->u->v->t的通路,从而能继续增广,于是最大流流量(也就是最小割容量)会增大。这即说明(u,v)是最小割集中必须出现的边。
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 4005,maxm = 200005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
int h[maxn],ne = 2,n,m,S,T;
struct EDGE{int from,to,nxt,f;}ed[maxm];
inline void build(int u,int v,int w){
ed[ne] = (EDGE){u,v,h[u],w}; h[u] = ne++;
ed[ne] = (EDGE){v,u,h[v],0}; h[v] = ne++;
}
int vis[maxn],d[maxn],cur[maxn];
bool bfs(){
memset(d,0,sizeof(d));
memset(vis,0,sizeof(vis));
queue<int> q;
vis[S] = true; q.push(S); int u;
while (!q.empty()){
u = q.front(); q.pop();
Redge(u) if (ed[k].f && !vis[to = ed[k].to]){
d[to] = d[u] + 1; vis[to] = true; q.push(to);
}
}
return vis[T];
}
int dfs(int u,int minf){
if (u == T || !minf) return minf;
int f,flow = 0,to;
if (cur[u] == -1) cur[u] = h[u];
for (int& k = cur[u]; k; k = ed[k].nxt)
if (d[to = ed[k].to] == d[u] + 1 && (f = dfs(to,min(ed[k].f,minf)))){
ed[k].f -= f; ed[k ^ 1].f += f;
flow += f; minf -= f;
if (!minf) break;
}
return flow;
}
int maxflow(){
int flow = 0;
while (bfs()){
for (int i = 1; i <= n; i++) cur[i] = -1;
flow += dfs(S,INF);
}
return flow;
}
int dfn[maxn],low[maxn],st[maxn],Scc[maxn],top,cnt,scci;
void dfs(int u){
dfn[u] = low[u] = ++cnt;
st[++top] = u;
Redge(u) if (ed[k].f){
if (!dfn[to = ed[k].to]){
dfs(to);
low[u] = min(low[u],low[to]);
}else if (!Scc[to]) low[u] = min(low[u],dfn[to]);
}
if (dfn[u] == low[u]){
scci++;
do{
Scc[st[top]] = scci;
}while (st[top--] != u);
}
}
int ans[2][maxm];
int main(){
n = read(); m = read(); S = read(); T = read(); int a,b,w;
REP(i,m){
a = read(); b = read(); w = read();
build(a,b,w);
}
maxflow();
REP(i,n) if (!dfn[i]) dfs(i);
for (int i = 1; i <= m; i++){
int k = i << 1;
if (!ed[k].f){
if (Scc[ed[k].from] != Scc[ed[k].to]) ans[0][i] = 1;
if (Scc[ed[k].from] == Scc[S] && Scc[ed[k].to] == Scc[T]) ans[1][i] = 1;
}
}
for (int i = 1; i <= m; i++) printf("%d %d\n",ans[0][i],ans[1][i]);
return 0;
}
BZOJ1797 [Ahoi2009]Mincut 最小割 【最小割唯一性判定】的更多相关文章
- bzoj1797: [Ahoi2009]Mincut 最小割
最大流+tarjan.然后因为原来那样写如果图不连通的话就会出错,WA了很久. jcvb: 在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号.显然有id[s]!=id[t] ...
- bzoj1797: [Ahoi2009]Mincut 最小割(最小割+强联通tarjan)
1797: [Ahoi2009]Mincut 最小割 题目:传送门 题解: 感觉是一道肥肠好的题目. 第二问其实比第一问简单? 用残余网络跑强联通,流量大于0才访问. 那么如果两个点所属的联通分量分别 ...
- bzoj1797: [Ahoi2009]Mincut 最小割(网络流,缩点)
传送门 首先肯定要跑一个最小割也就是最大流 然后我们把残量网络tarjan,用所有没有满流的边来缩点 一条边如果没有满流,那它就不可能被割了 一条边如果所属的两个强联通分量不同,它就可以被割 一条边如 ...
- 【最小割】【Dinic】【强联通分量缩点】bzoj1797 [Ahoi2009]Mincut 最小割
结论: 满足条件一:当一条边的起点和终点不在 残量网络的 一个强联通分量中.且满流. 满足条件二:当一条边的起点和终点分别在 S 和 T 的强联通分量中.且满流.. 网上题解很多的. #include ...
- BZOJ 1797: [Ahoi2009]Mincut 最小割
1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2076 Solved: 885[Submit] ...
- 【BZOJ-1797】Mincut 最小割 最大流 + Tarjan + 缩点
1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1685 Solved: 724[Submit] ...
- BZOJ 1797: [Ahoi2009]Mincut 最小割( 网络流 )
先跑网络流, 然后在残余网络tarjan缩点. 考虑一条边(u,v): 当且仅当scc[u] != scc[v], (u,v)可能出现在最小割中...然而我并不会证明 当且仅当scc[u] = scc ...
- BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan
BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤ ...
- 1797: [Ahoi2009]Mincut 最小割
1797: [Ahoi2009]Mincut 最小割 链接 分析: 题意为:问一条边是否可能存在于最小割中,是否一定存在于最小割中. 首先最小割的边一定是满流的边.且这条边点两个端点u.v中,至少一个 ...
随机推荐
- 3204: 数组做函数参数--排序函数2--C语言
3204: 数组做函数参数--排序函数2--C语言 时间限制: 1 Sec 内存限制: 128 MB提交: 211 解决: 143[提交][状态][讨论版][命题人:smallgyy] 题目描述 ...
- 基于纹理内存的CUDA热传导模拟
原文链接 项目中有三个,第一个是全局内存,其余两个分别是基于1d和2d纹理内存.项目打包下载. 纹理内存是只读内存,与常量内存相同的是,纹理内存也缓存在芯片中,因此某些情况下,它能减少对内存的请求并提 ...
- Rhadoop安装
1.ubuntu,hadoop,R,jdk安装好 2.下载Rhadoop项目的的三个包,rmr,hdfs,rHBase存放到Downloads/R. 3.切换到root 4.安装依赖的库 ~R CMD ...
- win10搭建FTP服务器
下面就给大家讲解Win10搭建FTP服务器的详细操作方法. 1.首先,我们在Cortana中搜索控制面板并进入: 2.在控制面板-程序中,点击启用或关闭Windows功能: 3.在FTP服务器.Web ...
- PHP代码中出现中文乱码怎么办?
header("Content-type:text/html;charset=utf-8"); //加上这个就OK //示例 : class WechatController ex ...
- mysql 5.7初始化默认密码错误
下载了一个mysql 5.7.17的安装包后,安装后怎么都启动不了,好在mysql安装是成功了,没办法只有使用命令行重新初始化设置了 我的mysql安装根目录为:C:\Program Files\My ...
- JZOJ 5842
Description 给定一个n*m 的 01 矩阵,求包含[l,r]个 1 的子矩形个数. Input 第一行,两个正整数n,m.接下来n 行,每行一个长度为 m 的 01 串,表示给定的矩阵.接 ...
- Jconsole连接Tomcat JVM
修改java虚拟机启动参数 在%TOMCAT_HOME%\bin\catalina.sh文件的最顶端 JAVA_OPTS=”-Dcom.sun.management.jmxremote.port=10 ...
- Spring---环境搭建与包介绍
jar包下载路径 首先需要下载Spring框架 spring-framework-5.0.0.RELEASE-dist,官方地址为https://repo.spring.io/release/org/ ...
- [译]Exactly once is NOT exactly the same
近日学习Pulsar文档时,注意到Pulsar提到其提供的是effectively-once语义,而不是其它流计算引擎announce的exactly-once语义,并引用了Exactly once ...