实验室最近用到nmi( Normalized Mutual information )评价聚类效果,在网上找了一下这个算法的实现,发现满意的不多.

浙江大学蔡登教授有一个,http://www.zjucadcg.cn/dengcai/Data/code/MutualInfo.m ,他在数据挖掘届地位很高,他实现这个算法的那篇论文引用率高达三位数。但这个实现,恕个人能力有限,我实在是没有看懂:变量命名极为个性,看的如坠云雾;代码倒数第二行作者自己添加注释why complex,我就更不懂了;最要命的是使用他的函数MutualInfo(L1,L2)得到的结果不等于MutualInfo(L2,L1),没有对称性!

还有个python的版本http://blog.sun.tc/2010/10/mutual-informationmi-and-normalized-mutual-informationnmi-for-numpy.html,这个感觉很靠谱,作者对nmi的理解和我是一样的。

我的理解来自wiki和stanford,其实很简单,先说一下问题:例如stanford中介绍的一个例子:

比如标准结果是图中的叉叉点点圈圈,我的聚类结果是图中标注的三个圈。

或者我的结果: A = [1 1 1 1 1 1   2 2 2 2 2 2    3 3 3 3 3];

标准的结果   : B = [1 2 1 1 1 1   1 2 2 2 2 3    1 1 3 3 3];

问题:衡量我的结果和标准结果有多大的区别,若我的结果和他的差不多,结果应该为1,若我做出来的结果很差,结果应趋近于0。

MI可以按照下面的公式计算。X=unique(A)=[1 2 3],Y=unique(B)=[1 2 3];

分子p(x,y)为x和y的联合分布概率,

p(1,1)=5/17, p(1,2)=1/17, p(1,3)=0;

p(2,1)=1/17, p(2,2)=4/17, p(2,3)=1/17;

p(3,1)=2/17, p(3,2)=0, p(3,3)=3/17;

分母p(x)为x的概率函数,p(y)为y的概率函数,x和y分别来自于A和B中的分布,所以即使x=y时,p(x)和p(y)也可能是不一样的。

对p(x): p(1)=6/17 p(2)=6/17 p(3)=5/17

对p(y): p(1)=8/17 p(2)=5/17 P(3)=4/17

这样就可以算出MI值了。

标准化互聚类信息也很简单,有几个不同的版本,大体思想都是相同的,都是用熵做分母将MI值调整到0与1之间。一个比较多见的实现是下面所示:

H(X)和H(Y)分别为X和Y的熵,下面的公式中log的底b=2。

例如H(X) =  -p(1)*log2(p(1)) - -p(2)*log2(p(2)) -p(3)*log2(p(3))。

matlab实现代码如下


function MIhat = nmi( A, B ) 
%NMI Normalized mutual information
% http://en.wikipedia.org/wiki/Mutual_information
% http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
% Author: http://www.cnblogs.com/ziqiao/   [2011/12/13] 
if length( A ) ~= length( B)
    error('length( A ) must == length( B)');
end
total = length(A);
A_ids = unique(A);
B_ids = unique(B); % Mutual information
MI = 0;
for idA = A_ids
    for idB = B_ids
         idAOccur = find( A == idA );
         idBOccur = find( B == idB );
         idABOccur = intersect(idAOccur,idBOccur); 
         
         px = length(idAOccur)/total;
         py = length(idBOccur)/total;
         pxy = length(idABOccur)/total;
         
         MI = MI + pxy*log2(pxy/(px*py)+eps); % eps : the smallest positive number     end
end % Normalized Mutual information
Hx = 0; % Entropies
for idA = A_ids
    idAOccurCount = length( find( A == idA ) );
    Hx = Hx - (idAOccurCount/total) * log2(idAOccurCount/total + eps);
end
Hy = 0; % Entropies
for idB = B_ids
    idBOccurCount = length( find( B == idB ) );
    Hy = Hy - (idBOccurCount/total) * log2(idBOccurCount/total + eps);
end MIhat = 2 * MI / (Hx+Hy);
end % Example :  
% (http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html)
% A = [1 1 1 1 1 1   2 2 2 2 2 2    3 3 3 3 3];
% B = [1 2 1 1 1 1   1 2 2 2 2 3    1 1 3 3 3];
% nmi(A,B)
% ans = 0.3646  

为了节省运行时间,将for循环用矩阵运算代替,1百万的数据量运行 1.795723second,上面的方法运行3.491053 second;

但是这种方法太占内存空间, 五百万时,利用matlab2011版本的内存设置就显示Out of memory了。


function MIhat = nmi( A, B )
%NMI Normalized mutual information
% http://en.wikipedia.org/wiki/Mutual_information
% http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
% Author: http://www.cnblogs.com/ziqiao/   [2011/12/15] 
if length( A ) ~= length( B)
    error('length( A ) must == length( B)');
end
total = length(A);
A_ids = unique(A);
A_class = length(A_ids);
B_ids = unique(B);
B_class = length(B_ids);
% Mutual information
idAOccur = double (repmat( A, A_class, 1) == repmat( A_ids', 1, total ));
idBOccur = double (repmat( B, B_class, 1) == repmat( B_ids', 1, total ));
idABOccur = idAOccur * idBOccur';
Px = sum(idAOccur') / total;
Py = sum(idBOccur') / total;
Pxy = idABOccur / total;
MImatrix = Pxy .* log2(Pxy ./(Px' * Py)+eps);
MI = sum(MImatrix(:))
% Entropies
Hx = -sum(Px .* log2(Px + eps),2);
Hy = -sum(Py .* log2(Py + eps),2);
%Normalized Mutual information
MIhat = 2 * MI / (Hx+Hy);
% MIhat = MI / sqrt(Hx*Hy); another version of NMI
end % Example :  
% (http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html)
% A = [1 1 1 1 1 1   2 2 2 2 2 2    3 3 3 3 3];
% B = [1 2 1 1 1 1   1 2 2 2 2 3    1 1 3 3 3];
% nmi(A,B) 
% ans =  0.3646

参考: stanford的讲解:http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html

wiki百科的讲解:http://en.wikipedia.org/wiki/Mutual_information

某作者的python的实现:http://blog.sun.tc/2010/10/mutual-informationmi-and-normalized-mutual-informationnmi-for-numpy.html

蔡登的matlab实现:http://www.zjucadcg.cn/dengcai/Data/code/MutualInfo.m

Mutual information and Normalized Mutual information 互信息和标准化互信息的更多相关文章

  1. 社区发现的3个评估指标:标准化互信息NMI,ARI指标,以及模块度(modularity)

    转载请注明出处:http://www.cnblogs.com/bethansy/p/6890972.html 一.已知真实社区划分结果 1.NMI指数,互信息和标准化互信息 具体公式和matlab代码 ...

  2. 信息论 | information theory | 信息度量 | information measures | R代码(一)

    这个时代已经是多学科相互渗透的时代,纯粹的传统学科在没落,新兴的交叉学科在不断兴起. life science neurosciences statistics computer science in ...

  3. MATLAB聚类有效性评价指标(外部)

    MATLAB聚类有效性评价指标(外部) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 更多内容,请看:MATLAB.聚类.MATLAB聚类有效性评价指 ...

  4. Mutual Information

    Mutal Information, MI, 中文名称:互信息. 用于描述两个概率分布的相似/相关程度. 常用于衡量两个不同聚类算法在同一个数据集的聚类结果的相似性/共享的信息量. 给定两种聚类结果\ ...

  5. 论文解读(GMI)《Graph Representation Learning via Graphical Mutual Information Maximization》2

    Paper Information 论文作者:Zhen Peng.Wenbing Huang.Minnan Luo.Q. Zheng.Yu Rong.Tingyang Xu.Junzhou Huang ...

  6. 论文解读(GMI)《Graph Representation Learning via Graphical Mutual Information Maximization》

    Paper Information 论文作者:Zhen Peng.Wenbing Huang.Minnan Luo.Q. Zheng.Yu Rong.Tingyang Xu.Junzhou Huang ...

  7. 论文解读( N2N)《Node Representation Learning in Graph via Node-to-Neighbourhood Mutual Information Maximization》

    论文信息 论文标题:Node Representation Learning in Graph via Node-to-Neighbourhood Mutual Information Maximiz ...

  8. Is the Information Reliable? -POJ2983差分约束

    Time Limit: 3000MS Memory Limit: 131072K Description The galaxy war between the Empire Draco and the ...

  9. Debugging Information in Separate Files

    [Debugging Information in Separate Files] gdb allows you to put a program's debugging information in ...

随机推荐

  1. Qt跨平台的一个例程

    我的同事penk在近期北京的Hackathon展示了一个在多平台的例程. 非常多开发人员对这个挺感兴趣的. 今天我就把这个资源介绍给大家. 这是同一个用Qt写的应用.能够同一时候在Ubuntu Des ...

  2. C# Main(string[] args)方法参数

    Main 方法是 C# 控制台应用程序或窗口应用程序的入口点,以下是各种情况下方法参数的输入方式: 1.通过vs启动,需要在“项目属性-调试-启动选项-命令行参数”中配置参数,格式为:参数一 参数二 ...

  3. mysql存储过程之循环

    链接: http://www.blogjava.net/rain1102/archive/2011/05/16/350301.html

  4. 关于Swiper(概念)

    Swiper 是一款免费以及轻量级的移动设备触控滑块的js框架,使用硬件加速过渡(如果该设备支持的话). 主要使用于移动端的网站.移动web apps,native apps和hybrid apps. ...

  5. 零基础学python-3.1 python基本规则和语句

    1."#"凝视的開始 #凝视的东西 print("welcome") 2."\n"换行符 watermark/2/text/aHR0cDov ...

  6. 笔记08 WPF导航

    如何在winform中做导航,如何重定向界面,就产生了争执. 是用window还是Page还是UserControl? 先不管用啥.我们先比较一下各自的优缺点. 在WPF中使用导航,内容被组织在Pag ...

  7. Laravel 5.4建站06--API 认证系统 Passport

    介绍 在 Laravel 中,实现基于传统表单的登陆和授权已经非常简单,但是如何满足 API 场景下的授权需求呢?在 API 场景里通常通过令牌来实现用户授权,而非维护请求之间的 Session 状态 ...

  8. CSS盒模型之三角形

    W3上介绍盒模型: 这里教程,但是太过于简单了,http://www.w3.org/community/webed/wiki/CSS/Training/Box_model. 如图,盒模型和背景属性控制 ...

  9. HSSFWorkbook

    public ActionResult excelPrint() { HSSFWorkbook workbook = new HSSFWorkbook();// 创建一个Excel文件 HSSFShe ...

  10. 制作一个塔防游戏 Cocos2d-x 2.1.4 (一)

    在这篇文章,将会学习到怎样制作一个塔防游戏.在这其中,学习怎样在设定的时间内出现一波波的敌人,使这些敌人沿着指定的路点前进.怎样在地图上指定的位置创建炮塔.怎样使炮塔射击敌人,怎样可视化调试路点和炮塔 ...