洛谷 P4336 黑暗前的幻想乡 —— 容斥+矩阵树定理
题目:https://www.luogu.org/problemnew/show/P4336
当作考试题了,然而没想出来,呵呵。
其实不是二分图完美匹配方案数,而是矩阵树定理+容斥...
就是先放上所有的边,求生成树个数,但其中可能有的公司的边没有选上,所以减去至少一个公司没选上的,加上两个...
高斯消元里面可以直接除而不用辗转相除,因为取模可以乘逆元,反倒是辗转相除里不能直接用除法,会减不到0。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define pb push_back
using namespace std;
typedef long long ll;
int const xn=,xm=,mod=1e9+;
int n,m[xn],id[xn][xn],deg[xn][xn],sid[xn][xn],ans,cnt;
ll a[xn][xn];
vector<int>vc[xn];
struct N{int u,v;}ed[xm];
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return f?ret:-ret;
}
ll pw(ll a,int b)
{
ll ret=;
for(;b;b>>=,a=(a*a)%mod)if(b&)ret=(ret*a)%mod;
return ret;
}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
int gauss()
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)a[i][j]=upt(deg[i][j]-sid[i][j]);
int fl=;
for(int i=;i<n;i++)
{
int t=i;
for(int j=i+;j<n;j++)
if(a[j][i]>a[t][i])t=j;
if(t!=i)
{
fl=-fl;
for(int j=;j<n;j++)swap(a[i][j],a[t][j]);
}
for(int j=i+;j<n;j++)
{
int tmp=(ll)a[j][i]*pw(a[i][i],mod-)%mod;//a[j][i]/a[i][i]
for(int k=i;k<n;k++)
a[j][k]=upt(a[j][k]-(ll)tmp*a[i][k]%mod);
}
}
ll ret=;
for(int i=;i<n;i++)ret=(ll)ret*a[i][i]%mod;
return ret*fl;
}
void dfs(int nw,int s)
{
if(nw==n)
{
int sum=gauss();
if((s&)==((n-)&))ans+=sum; else ans-=sum;
ans=upt(ans);
return;
}
dfs(nw+,s); int siz=vc[nw].size();
for(int i=;i<siz;i++)
{
int u=ed[vc[nw][i]].u,v=ed[vc[nw][i]].v;
deg[u][u]++; deg[v][v]++;
sid[u][v]++; sid[v][u]++;
}
dfs(nw+,s+);
for(int i=;i<siz;i++)
{
int u=ed[vc[nw][i]].u,v=ed[vc[nw][i]].v;
deg[u][u]--; deg[v][v]--;
sid[u][v]--; sid[v][u]--;
}
}
int main()
{
n=rd();
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
ed[++cnt].u=i,ed[cnt].v=j,id[i][j]=id[j][i]=cnt;
for(int i=;i<n;i++)
{
m[i]=rd();
for(int j=,x,y;j<=m[i];j++)x=rd(),y=rd(),vc[i].pb(id[x][y]);
}
dfs(,);
printf("%d\n",ans);
return ;
}
洛谷 P4336 黑暗前的幻想乡 —— 容斥+矩阵树定理的更多相关文章
- 【BZOJ4596】[Shoi2016]黑暗前的幻想乡 容斥+矩阵树定理
[BZOJ4596][Shoi2016]黑暗前的幻想乡 Description 幽香上台以后,第一项措施就是要修建幻想乡的公路.幻想乡有 N 个城市,之间原来没有任何路.幽香向选民承诺要减税,所以她打 ...
- 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 324 Solved: 187 Description ...
- bzoj 4596: [Shoi2016]黑暗前的幻想乡【容斥原理+矩阵树定理】
真是简单粗暴 把矩阵树定理的运算当成黑箱好了反正我不会 这样我们就可以在O(n^3)的时间内算出一个无向图的生成树个数了 然后题目要求每个工程队选一条路,这里可以考虑容斥原理:全选的方案数-不选工程队 ...
- [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)
这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...
- BZOJ 4596: [Shoi2016]黑暗前的幻想乡(容斥+Matrix_Tree)
传送门 解题思路 看到计数想容斥--\(from\) \(shadowice1984\)大爷.首先求出原图的生成树个数比较容易,直接上矩阵树定理,但这样会多算一点东西,会把\(n-2\)个公司的多算进 ...
- P4336 [SHOI2016]黑暗前的幻想乡
P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理(高斯消元+乘法逆元)+容斥 ans=总方案数 -(公司1未参加方案数 ∪ 公司2未参加方案数 ∪ 公司3未参加方案数 ∪ ...... ∪ ...
- bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 559 Solved: 325[Submit][Sta ...
- bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 464 Solved: 264[Submit][Sta ...
- 「SHOI2016」黑暗前的幻想乡 解题报告
「SHOI2016」黑暗前的幻想乡 sb题想不出来,应该去思考原因,而不是自暴自弃 一开始总是想着对子树做dp,但是状态压不起去,考虑用容斥消减一些条件变得好统计,结果越想越乱. 期间想过矩阵树定理, ...
随机推荐
- wifi认证Portal开发系列(四):portal协议的java封装
一.报文封装类 AbstractPortalMsg.java Portal协议数据报文封装类 package org.yoki.edu.common.protocol.portal.msg; imp ...
- 3_Jsp标签_简单标签_防盗链和转义标签的实现
一概念 1防盗链 在HTTP协议中,有一个表头字段叫referer,采用URL的格式来表示从哪儿链接到当前的网页或文件,通过referer,网站可以检测目标网页访问的来源网页.有了referer跟踪来 ...
- SQL时间戳的使用(转)
一直对时间戳这个概念比较模糊,相信有很多朋友也都会误认为:时间戳是一个时间字段,每次增加数据时,填入当前的时间值.其实这误导了很多朋友. 1.基本概念 时间戳:数据库中自动生成的唯一二进制数字,与时间 ...
- 九度OJ 1069:查找学生信息 (排序、查找)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:11240 解决:3024 题目描述: 输入N个学生的信息,然后进行查询. 输入: 输入的第一行为N,即学生的个数(N<=1000) 接 ...
- MaLoc: a practical magnetic fingerprinting approach to indoor localization using smartphones
https://www.indooratlas.com/ MaLoc: a practical magnetic fingerprinting approach to indoor localizat ...
- Linux就该这么学--命令集合10(vim编辑器)
1.vim编辑器的命令模式中常用的快捷键: dd 删除(剪切)光标所在整行 5dd 删除(剪切)从光标处开始的5行 yy 复制光标所在整行 5yy 复制从光标处开始的5行 p 将之前删除(dd)或复制 ...
- 运用<ul><li>做导航栏
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 【docker】开启remote api访问,并使用TLS加密
背景: docker默认是能使用本地的socket进行管理,这个在集群中使用的时候很不方便,因为很多功能还是需要链接docker服务进行操作,docker默认也可以开启tcp访问,但是这就相当于把整个 ...
- 深刻理解render 和 redirect_to
深刻理解render 和 redirect_to http://www.blogjava.net/fl1429/archive/2009/03/12/259403.html 由于最近老是在表单提交后出 ...
- Builder 模式初探
Builder 模式是一步一步创建一个复杂对象的创建型模式,它允许用户在不知道内部构建细节的情况下,可以更精细的控制对象的构造流程.该模式是为了将构建复杂对象的过程和它的部件解耦,使得构建过程和部件的 ...