hdu 4741 Save Labman No.004异面直线间的距离既构成最小距离的两个端点
Save Labman No.004
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1473 Accepted Submission(s): 484
During the research in World Line Alpha, the assistant of Dr. Kyouma, also the Labman No.004, Christina dies. Dr. Kyouma wants to save his assistant. Thus, he has to build a Time Tunnel to jump from World Line Alpha to World Line Beta in which Christina can be saved. More specifically, a Time Tunnel is a line connecting World Line Alpha and World Line Beta. In order to minimizing the risks, Dr. Kyouma wants you, Labman No.003 to build a Time Tunnel with shortest length.
Each case contains only one line with 12 float numbers (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), (x4, y4, z4), correspondingly indicating two points in World Line Alpha and World Line Beta. Note that a World Line is a three-dimensional line with infinite length.
Data satisfy T <= 10000, |x, y, z| <= 10,000.
The first line contains one float number, indicating the length of best Time Tunnel.
The second line contains 6 float numbers (xa, ya, za), (xb, yb, zb), seperated by blank, correspondingly indicating the endpoints of the best Time Tunnel in World Line Alpha and World Line Beta.
All the output float number should be round to 6 digits after decimal point. Test cases guarantee the uniqueness of the best Time Tunnel.
1 0 1 0 1 1 0 0 0 1 1 1
0.500000 0.500000 1.000000 0.666667 0.666667 0.666667
有必要拿出空间解析几何出来看看了,尼玛用平面方程跟直线方程求解的时候除数为零了。最后没办法只能看大神的模版了。。。。
大概解题思路:先求出两直线的公垂线(两方向向量的叉积),以公垂线跟一直线形成一平面求另一直线与该平面的交点。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std; const double eps = 1e-;
struct Point3//三维空间点
{
double x, y, z;
Point3(double x=,double y=,double z=): x(x),y(y),z(z){}
Point3 operator + (Point3 &t){return Point3(x+t.x, y+t.y, z+t.z);}
Point3 operator - (Point3 &t) {return Point3(x-t.x, y-t.y, z-t.z);}
Point3 operator * (double p) {return Point3(x*p, y*p, z*p);}
Point3 operator / (double p) {return Point3(x/p, y/p, z/p);}
};
typedef Point3 Vector3;
struct Line//空间直线
{
Point3 a,b;
};
struct Plane//空间平面
{
Point3 a,b,c;
Plane(){}
Plane(Point3 a, Point3 b, Point3 c):a(a),b(b),c(c){}
};
int dcmp(double x)
{
if(fabs(x) < eps) return ;
return x < ? - : ;
}
double Dot(Vector3 A,Vector3 B) { return A.x*B.x + A.y*B.y + A.z*B.z; }
double Length2(Vector3 A) { return Dot(A, A); }
Vector3 Cross(Vector3 A, Vector3 B) { return Vector3(A.y*B.z - A.z*B.y, A.z*B.x - A.x*B.z, A.x*B.y - A.y*B.x); } double LineToLine(Line u,Line v,Vector3 &t)//空间直线间距离
{
t=Cross(u.a-u.b,v.a-v.b);
return fabs(Dot(u.a-v.a,t))/sqrt(Length2(t));
} Vector3 normalVector(Plane s)//取平面法向量
{
return Cross(s.a-s.b,s.b-s.c);
} Point3 Intersection(Line l,Plane s)//空间平面与直线的交点
{
Point3 ret = normalVector(s);
double t = (ret.x*(s.a.x-l.a.x)+ret.y*(s.a.y-l.a.y)+ret.z*(s.a.z-l.a.z))
/(ret.x*(l.b.x-l.a.x)+ret.y*(l.b.y-l.a.y)+ret.z*(l.b.z-l.a.z));
ret.x = l.a.x + ( l.b.x - l.a.x ) * t;
ret.y = l.a.y + ( l.b.y - l.a.y ) * t;
ret.z = l.a.z + ( l.b.z - l.a.z ) * t;
return ret;
} void solve(Line A, Line B)
{
Vector3 normal;
double d = LineToLine(A,B,normal);
printf("%.6lf\n",d);
Plane pa = Plane(A.a,A.b,A.a+normal);
Plane pb = Plane(B.a,B.b,B.a+normal);
Point3 u = Intersection(B,pa);
Point3 v = Intersection(A,pb);
printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n", v.x, v.y, v.z, u.x, u.y, u.z );
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
Line A,B;
scanf("%lf%lf%lf", &A.a.x, &A.a.y, &A.a.z);
scanf("%lf%lf%lf", &A.b.x, &A.b.y, &A.b.z);
scanf("%lf%lf%lf", &B.a.x, &B.a.y, &B.a.z);
scanf("%lf%lf%lf", &B.b.x, &B.b.y, &B.b.z);
solve(A,B);
}
return ;
}
hdu 4741 Save Labman No.004异面直线间的距离既构成最小距离的两个端点的更多相关文章
- hdu 4741 Save Labman No.004 (异面直线的距离)
转载学习: #include <cstdio> #include <cstdlib> #include <cstring> #include <algorit ...
- HDU 4741 Save Labman No.004 (2013杭州网络赛1004题,求三维空间异面直线的距离及最近点)
Save Labman No.004 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU 4741 Save Labman No.004 ( 三维计算几何 空间异面直线距离 )
空间异面直线的距离直接套模板. 求交点:求出两条直线的公共法向量,其中一条直线与法向量构成的平面 与 另一条直线 的交点即可.还是套模板o(╯□╰)o 1.不会有两条线平行的情况. 2.两条直线可能相 ...
- HDU 4741 Save Labman No.004 2013 ACM/ICPC 杭州网络赛
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4741 题意:给你两条异面直线,然你求着两条直线的最短距离,并求出这条中垂线与两直线的交点. 需要注意的是 ...
- HDU 4741 Save Labman No.004(计算几何)
题目链接 抄的模版...mark一下. #include <iostream> #include <cstring> #include <cstdio> #incl ...
- hdu 4741 Save Labman No.004 [2013年杭州ACM网络赛]
// Time 234 ms; Memory 244 K #include<iostream> #include<cstdio> #include<cmath> u ...
- hdu 4741 Save Labman No.004(2013杭州网络赛)
http://blog.sina.com.cn/s/blog_a401a1ea0101ij9z.html 空间两直线上最近点对. 这个博客上给出了很好的点法式公式了...其实没有那么多的tricky. ...
- [HDU 4741]Save Labman No.004[计算几何][精度]
题意: 求两条空间直线的距离,以及对应那条距离线段的两端点坐标. 思路: 有一个参数方程算最短距离的公式, 代入求即可. 但是这题卡精度... 用另外的公式(先算出a直线上到b最近的点p的坐标, 再算 ...
- HDU 4741 Save Labman No.004 (几何)
题意:求空间两线的最短距离和最短线的交点 题解: 线性代数和空间几何,主要是用叉积,点积,几何. 知道两个方向向量s1,s2,求叉积可以得出他们的公共垂直向量,然后公共垂直向量gamma和两线上的点形 ...
随机推荐
- C Library - <limits.h>
Introduction The limits.h header determines various properties of the various variable types. The ma ...
- ovx openVirtex安装
搞了好久的pox实验,中途一个星期没更新了吧, 今天继续... 新手第一次搞还是在虚拟机上最安全~ ovx参照上面的做吧,注意必须在联网的情况下,否则很多控件都连不上(第一次做的时候虚拟机没配ip 坑 ...
- cocos2dx 使用XMLHttpRequest时回调status为0的问题
今天使用cocos连接http访问时,使用XMLHttpRequest在pc上反问时正常的返回了status=0,但是在android上去返回status是0,看了一下底层代码, 发现status只有 ...
- Angular-网页定时刷新
类上方引入“OnInit”.“OnDestroy” import { OnInit, OnDestroy } from '@angular/core'; 类实现“OnInit”.“OnDestroy” ...
- [CF] 180 E. Cubes
对同类元素双指针扫描 #include<iostream> #include<cstring> #include<cstdio> #include<vecto ...
- php使用curl访问https返回无结果的问题
最近在做一个微信自动登录,发起验证以后回调页面获取openid时 curl函数返回空. $appid = "appid appid "; $secret = "secre ...
- 如何使用 HTML5 的picture元素处理响应式图片
来自: http://www.w3cplus.com/html5/quick-tip-how-to-use-html5-picture-for-responsive-images.html 图片在响应 ...
- 【mysql】【转发】my.cnf 讲解
PS:本配置文件针对Dell R710,双至强E5620.16G内存的硬件配置.CentOS 5.6 64位系统,MySQL 5.5.x 稳定版.适用于日IP 50-100w,PV 100-300w的 ...
- HTTPS的请求与响应
HTTP和HTTPS HTTP协议(HyperText Transfer Protocol,超文本传输协议):是一种发布和接收 HTML页面的方法. HTTPS(Hypertext Transfer ...
- Root CA certificate:ApacheJMeterTemporaryRootCA.crt created in JMeter bin directory
今天学习jmeter录制,在点击start之后弹出: 且在jmeter安装目录里确实生成了ApacheJMeterTemporaryRootCA.crt文件 上网查询官方文档http://120.52 ...