题目大意

有n个正整数X1,X2,...,Xn,再给出m1+m2个限制条件,限制分为两类:

1.给出a,b (1<=a,b<=n),要求满足Xa + 1 = Xb

2.给出c,d (1<=c,d<=n),要求满足Xc <= Xd

在满足所有限制的条件下,求集合{Xi}大小的最大值。

分析

差分约束,问题很新颖

注意到图有特殊性

限制1(1类边):双向边

限制2(2类边):单向边

我们考虑求强联通分量

连接两个强联通分量的边不可能是1类边(不然强联通就合起来了)

只可能是A<=B

只要保证A中最大值小于B中最小值,就可以使不同权值最多

一定是可以做到的

那么我们只需要对每个强联通求出答案再累加起来就好了

对于强联通中的2类边,一定是在一个环中的,一定都为一个权值(不然就分成两个连通块了)

这一部分的最长路跑出来是0

由于图中只有-1,0,1三种边

每个强联通中,

记D为任意两个点的 最长路的绝对值 的最大值

其实D就是最大权值和最小权值的差

所以每个连通块权值种类就是D+1

姿势

1.差分约束常常特判连边是否自环矛盾

2.floyd判负环可以一开始f[i][i]=0,跑floyd的时候不判i!=j!=k,跑完后看看f[i][i]有没有变

3.邻接矩阵建图注意重编时取max,min啥的

4.之前我tarjan一直是写错的

if(inst[y]) low[x]=min(low[x],dfn[y]);//注意这里是inst[i],因为有向图搜索顺序的问题,tarjan是可能跑到之前tarjan过的地方的,如果写if(dfn[y])这样会出bug
else if(!dfn[y]){
tarjan(y);
low[x]=min(low[x],low[y]);
}

5.spfa时用que[],inq[]

6.spfa时inc函数既写引用又写返回值,方便一些

solution

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
const int M=607;
const int N=100007;
const int INF=2139062144; inline int rd(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(;isdigit(c);c=getchar()) x=x*10+c-48;
return f?x:-x;
} int n,m1,m2; int g[M],te;
struct edge{
int y,d,next;
}e[N<<1];
struct node{
int x,y;
node(int xx=0,int yy=0){x=xx;y=yy;}
}e1[N],e2[N]; void addedge(int x,int d,int y){
e[++te].y=y;e[te].d=d;e[te].next=g[x];g[x]=te;
} int dfn[M],low[M],tdfn;
int col[M],cnt;
int st[M],tot;
int vis[M];
int f[M][M];
int ans[M];
int inst[M]; void tarjan(int x){
dfn[x]=low[x]=++tdfn;
st[++tot]=x;
inst[x]++;
int p,y;
for(p=g[x];p;p=e[p].next){
y=e[p].y;
if(inst[y]) low[x]=min(low[x],dfn[y]);//instack
else if(!dfn[y]){
tarjan(y);
low[x]=min(low[x],low[y]);
}
}
if(low[x]==dfn[x]){
++cnt;
while(st[tot]!=x){
inst[st[tot]]=0;
col[st[tot--]]=cnt;
}
inst[st[tot]]=0;
col[st[tot--]]=cnt;
}
} void floyd(){
int i,j,k;
for(k=1;k<=n;k++)
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(f[i][k]!=-INF&&f[k][j]!=-INF){
f[i][j]=max(f[i][j],f[i][k]+f[k][j]);
}
} int main(){ n=rd(),m1=rd(),m2=rd(); int i,j,x,y; for(i=1;i<=m1;i++){
x=rd(),y=rd();
if(x==y){//²é·ÖÔ¼Êø³£¼ûÌØÅÐ
puts("NIE");
return 0;
}
e1[i]=node(x,y);
addedge(x,1,y);
addedge(y,-1,x);
} for(i=1;i<=m2;i++){
x=rd(),y=rd();
e2[i]=node(x,y);
addedge(x,0,y);
} for(i=1;i<=n;i++)
if(!dfn[i])
tarjan(i); memset(f,128,sizeof(f));
for(i=1;i<=m1;i++){
x=e1[i].x,y=e1[i].y;
if(col[x]==col[y]){
f[x][y]=max(f[x][y],1);
f[y][x]=max(f[y][x],-1);
}
}
for(i=1;i<=m2;i++){
x=e2[i].x,y=e2[i].y;
if(col[x]==col[y]){
f[x][y]=max(f[x][y],0);
}
}
for(i=1;i<=n;i++) f[i][i]=0;//Åиº»·Óà floyd(); for(i=1;i<=n;i++) if(f[i][i]>0){
puts("NIE");
return 0;
} for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(col[i]==col[j]&&f[i][j]!=-INF) ans[col[i]]=max(ans[col[i]],abs(f[i][j]));///abs int sum=0;
for(i=1;i<=cnt;i++) sum+=ans[i]+1; printf("%d\n",sum); return 0;
}

bzoj 2788 [Poi2012]Festival 差分约束+tarjan+floyd的更多相关文章

  1. [Poi2012]Festival 差分约束+tarjan

    差分约束建图,发现要在每个联通块里求最长路,600,直接O(n3) floyed #include<cstdio> #include<cstring> #include< ...

  2. BZOJ_2788_[Poi2012]Festival_差分约束+tarjan+floyed

    BZOJ_2788_[Poi2012]Festival_差分约束+tarjan+floyed Description 有n个正整数X1,X2,...,Xn,再给出m1+m2个限制条件,限制分为两类: ...

  3. BZOJ 2330 SCOI2011糖果 差分约束

    2330: [SCOI2011]糖果 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2819  Solved: 820 题目连接 http://www ...

  4. bzoj 2330 [SCOI2011]糖果 差分约束模板

    题目大意 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的多,于是在分配 ...

  5. bzoj 4500: 矩阵【差分约束】

    (x,y,z)表示格子(x,y)的值为z,也就是x行+y列加的次数等于z,相当于差分约束的条件,用dfs判断冲突即可. #include<iostream> #include<cst ...

  6. BZOJ 2330: [SCOI2011]糖果( 差分约束 )

    坑爹...要求最小值要转成最长路来做.... 小于关系要转化一下 , A < B -> A <= B - 1 ------------------------------------ ...

  7. [BZOJ2788][Poi2012]Festival

    2788: [Poi2012]Festival Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 187  Solved: 91[Submit][Statu ...

  8. 【BZOJ1077】天平(差分约束)

    [BZOJ1077]天平(差分约束) 题面 BZOJ 洛谷 题解 利用矩阵可以很容易得到两个点之间的最大差和最小差,再利用这个信息判断即可.差分约束用\(Floyd\)计算.时间复杂度\(O(n^3) ...

  9. 【题解】 [POI2012]FES-Festival (差分约束)

    懒得复制题面,戳我戳我 Question: (因为网上找不到好的翻译,这里简单复述一下) 告诉你\(m1+m2\)个约束条件,然后要你找出\(X_1-X_n\)这些数字,求满足要求的数列中不同的数字个 ...

随机推荐

  1. IntelliJ IDEA java设置程序运行时内存

    Run/Edit Configurations   Configuration/VM options  例如:设置运行内存为:-Xmx3m -Xms3m

  2. JS Math方法、逻辑

    Math.PI; // 返回 3.141592653589793 Math.round(x) 的返回值是 x 四舍五入为最接近的整数. Math.pow(x, y) 的返回值是 x 的 y 次幂. M ...

  3. springmvc的第一个程序

    文中用的框架版本:spring 3,hibernate 3,没有的,自己上网下. web.xml配置: <?xml version="1.0" encoding=" ...

  4. JQuery EasyUI学习记录(三)

    1.jQuery EasyUI messager使用方式 1.1 alert方法 $(function(){ //1.alert方法---提示框 $.messager.alert("标题&q ...

  5. iOS JS 交互之利用系统JSContext实现 JS调用oc方法

    ios js 交互分为两块: 1.oc调用js 这一块实现起来比较简单, 我的项目中加载的是本地的html,js,css,需要注意的是当你向工程中拖入这些文件时,选择如下操作,(拖入的文件夹是蓝色的, ...

  6. cin 和 getline 混用中需要注意的问题

    这段时间在刷题过程中遇到一个cin和getline混合使用中的问题,解决之后记录如下: 先来看一段代码 #include <iostream> #include <string> ...

  7. Linux - 后台运行 ctrl + z , jobs , bg , fg

    一.& 最经常被用到 这个用在一个命令的最后,可以把这个命令放到后台执行 二.ctrl + z 可以将一个正在前台执行的命令放到后台,并且暂停三.jobs查看当前有多少在后台运行的命令四.fg ...

  8. 每天一个linux命令(13):less命令

    less 工具也是对文件或其它输出进行分页显示的工具,应该说是linux正统查看文件内容的工具,功能极其强大.less 的用法比起 more 更加的有弹性.在 more 的时候,我们并没有办法向前面翻 ...

  9. Unity基础-Input接口

    input 底层的设备输入接口,在开发中很少用到 Input.GetKey() // Update is called once per frame void Update () { if (Inpu ...

  10. Yii2 AR模型搜索数据条数不对,AR模型默认去重

    最近在做Yii2的项目时, 发现了一个yii2 自带的Ar模型会自动对搜索出来的字段去重. 默认去重字段: id,  其他字段暂没发现 1. 例如: public function fields { ...