bzoj 2788 [Poi2012]Festival 差分约束+tarjan+floyd
题目大意
有n个正整数X1,X2,...,Xn,再给出m1+m2个限制条件,限制分为两类:
1.给出a,b (1<=a,b<=n),要求满足Xa + 1 = Xb
2.给出c,d (1<=c,d<=n),要求满足Xc <= Xd
在满足所有限制的条件下,求集合{Xi}大小的最大值。
分析
差分约束,问题很新颖
注意到图有特殊性
限制1(1类边):双向边
限制2(2类边):单向边
我们考虑求强联通分量
连接两个强联通分量的边不可能是1类边(不然强联通就合起来了)
只可能是A<=B
只要保证A中最大值小于B中最小值,就可以使不同权值最多
一定是可以做到的
那么我们只需要对每个强联通求出答案再累加起来就好了
对于强联通中的2类边,一定是在一个环中的,一定都为一个权值(不然就分成两个连通块了)
这一部分的最长路跑出来是0
由于图中只有-1,0,1三种边
每个强联通中,
记D为任意两个点的 最长路的绝对值 的最大值
其实D就是最大权值和最小权值的差
所以每个连通块权值种类就是D+1
姿势
1.差分约束常常特判连边是否自环矛盾
2.floyd判负环可以一开始f[i][i]=0,跑floyd的时候不判i!=j!=k,跑完后看看f[i][i]有没有变
3.邻接矩阵建图注意重编时取max,min啥的
4.之前我tarjan一直是写错的
if(inst[y]) low[x]=min(low[x],dfn[y]);//注意这里是inst[i],因为有向图搜索顺序的问题,tarjan是可能跑到之前tarjan过的地方的,如果写if(dfn[y])这样会出bug
else if(!dfn[y]){
tarjan(y);
low[x]=min(low[x],low[y]);
}
5.spfa时用que[],inq[]
6.spfa时inc函数既写引用又写返回值,方便一些
solution
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
const int M=607;
const int N=100007;
const int INF=2139062144;
inline int rd(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(;isdigit(c);c=getchar()) x=x*10+c-48;
return f?x:-x;
}
int n,m1,m2;
int g[M],te;
struct edge{
int y,d,next;
}e[N<<1];
struct node{
int x,y;
node(int xx=0,int yy=0){x=xx;y=yy;}
}e1[N],e2[N];
void addedge(int x,int d,int y){
e[++te].y=y;e[te].d=d;e[te].next=g[x];g[x]=te;
}
int dfn[M],low[M],tdfn;
int col[M],cnt;
int st[M],tot;
int vis[M];
int f[M][M];
int ans[M];
int inst[M];
void tarjan(int x){
dfn[x]=low[x]=++tdfn;
st[++tot]=x;
inst[x]++;
int p,y;
for(p=g[x];p;p=e[p].next){
y=e[p].y;
if(inst[y]) low[x]=min(low[x],dfn[y]);//instack
else if(!dfn[y]){
tarjan(y);
low[x]=min(low[x],low[y]);
}
}
if(low[x]==dfn[x]){
++cnt;
while(st[tot]!=x){
inst[st[tot]]=0;
col[st[tot--]]=cnt;
}
inst[st[tot]]=0;
col[st[tot--]]=cnt;
}
}
void floyd(){
int i,j,k;
for(k=1;k<=n;k++)
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(f[i][k]!=-INF&&f[k][j]!=-INF){
f[i][j]=max(f[i][j],f[i][k]+f[k][j]);
}
}
int main(){
n=rd(),m1=rd(),m2=rd();
int i,j,x,y;
for(i=1;i<=m1;i++){
x=rd(),y=rd();
if(x==y){//²é·ÖÔ¼Êø³£¼ûÌØÅÐ
puts("NIE");
return 0;
}
e1[i]=node(x,y);
addedge(x,1,y);
addedge(y,-1,x);
}
for(i=1;i<=m2;i++){
x=rd(),y=rd();
e2[i]=node(x,y);
addedge(x,0,y);
}
for(i=1;i<=n;i++)
if(!dfn[i])
tarjan(i);
memset(f,128,sizeof(f));
for(i=1;i<=m1;i++){
x=e1[i].x,y=e1[i].y;
if(col[x]==col[y]){
f[x][y]=max(f[x][y],1);
f[y][x]=max(f[y][x],-1);
}
}
for(i=1;i<=m2;i++){
x=e2[i].x,y=e2[i].y;
if(col[x]==col[y]){
f[x][y]=max(f[x][y],0);
}
}
for(i=1;i<=n;i++) f[i][i]=0;//Åиº»·ÓÃ
floyd();
for(i=1;i<=n;i++) if(f[i][i]>0){
puts("NIE");
return 0;
}
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(col[i]==col[j]&&f[i][j]!=-INF) ans[col[i]]=max(ans[col[i]],abs(f[i][j]));///abs
int sum=0;
for(i=1;i<=cnt;i++) sum+=ans[i]+1;
printf("%d\n",sum);
return 0;
}
bzoj 2788 [Poi2012]Festival 差分约束+tarjan+floyd的更多相关文章
- [Poi2012]Festival 差分约束+tarjan
差分约束建图,发现要在每个联通块里求最长路,600,直接O(n3) floyed #include<cstdio> #include<cstring> #include< ...
- BZOJ_2788_[Poi2012]Festival_差分约束+tarjan+floyed
BZOJ_2788_[Poi2012]Festival_差分约束+tarjan+floyed Description 有n个正整数X1,X2,...,Xn,再给出m1+m2个限制条件,限制分为两类: ...
- BZOJ 2330 SCOI2011糖果 差分约束
2330: [SCOI2011]糖果 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2819 Solved: 820 题目连接 http://www ...
- bzoj 2330 [SCOI2011]糖果 差分约束模板
题目大意 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的多,于是在分配 ...
- bzoj 4500: 矩阵【差分约束】
(x,y,z)表示格子(x,y)的值为z,也就是x行+y列加的次数等于z,相当于差分约束的条件,用dfs判断冲突即可. #include<iostream> #include<cst ...
- BZOJ 2330: [SCOI2011]糖果( 差分约束 )
坑爹...要求最小值要转成最长路来做.... 小于关系要转化一下 , A < B -> A <= B - 1 ------------------------------------ ...
- [BZOJ2788][Poi2012]Festival
2788: [Poi2012]Festival Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 187 Solved: 91[Submit][Statu ...
- 【BZOJ1077】天平(差分约束)
[BZOJ1077]天平(差分约束) 题面 BZOJ 洛谷 题解 利用矩阵可以很容易得到两个点之间的最大差和最小差,再利用这个信息判断即可.差分约束用\(Floyd\)计算.时间复杂度\(O(n^3) ...
- 【题解】 [POI2012]FES-Festival (差分约束)
懒得复制题面,戳我戳我 Question: (因为网上找不到好的翻译,这里简单复述一下) 告诉你\(m1+m2\)个约束条件,然后要你找出\(X_1-X_n\)这些数字,求满足要求的数列中不同的数字个 ...
随机推荐
- python之函数的传参形参的第三种动态参数*args和**kwargs
1. 位置/关键字传参的缺点 当给函数传入的参数数目不定时,之前的传参方式解决不了问题. def eat(food1,food2,food3): print(f'我请你吃:{food1},{food2 ...
- SQL Server 游标的应用
----------------SQL游标应用----------------- 今天由于业务需求,需要在存储过程中实现有一个表的主键去匹配在另一个表中作为外键所对应的数值 ,若在C#中则非常简单只需 ...
- october安装过程
下载代码 composer create-project october/october myoctober 准备好数据库, create database october; 配置环境于安装 php ...
- 封装,封装的原理,Property ,setter ,deleter,多态,内置函数 ,__str__ , __del__,反射,动态导入模块
1,封装 ## 什么是封装 what 对外隐藏内部的属性,以及实现细节,并给外部提供使用的接口 学习封装的目的:就是为了能够限制外界对内部数据的方法 注意 :封装有隐藏的意思,但不是单纯的隐藏 pyt ...
- 命令行执行Qt程序
原文网址 //helloworld.cpp #include <QApplication> #include <QPushButton> int main(int argc,c ...
- ACM-ICPC 2015 Shenyang Preliminary Contest B. Best Solver
The so-called best problem solver can easily solve this problem, with his/her childhood sweetheart. ...
- NAT(地址转换技术)详解(转载)
作者:逃离地球的小小呆 来源:CSDN 原文:https://blog.csdn.net/gui951753/article/details/79593307版权声明:本文为博主原创文章,转载请附上博 ...
- OO第四单元博客
第四单元博客 这个单元的作业,emmmm助教们做的工作还是一如既往的多,我们只负责添一添代码,最后一次作业了,感谢各位助教和老师,同时也希望我能顺利通过这最后一关. 架构设计 第一次作业架构展示 第一 ...
- 光学字符识别OCR-7语言模型
由于图像质量等原因,性能再好的识别模型,都会有识别错误的可能性,为了减少识别错误率,可以将识别问题跟统计语言模型结合起来,通过动态规划的方法给出最优的识别结果.这是改进OCR识别效果的重要方法之一. ...
- IDEA-常用插件,使用FindBugs寻找bug,代码分析
bug无处不在,但是我们总希望少一点bug. 最近发现了一款好用的寻找bug的插件,特此记下. 一.安装 路径:File-->Settings-->Plugins-->Browse ...