用 Tensorflow 建立 CNN
稍稍乱入的CNN,本文依然是学习周莫烦视频的笔记。
还有 google 在 udacity 上的 CNN 教程。
CNN(Convolutional Neural Networks) 卷积神经网络简单讲就是把一个图片的数据传递给CNN,原涂层是由RGB组成,然后CNN把它的厚度加厚,长宽变小,每做一层都这样被拉长,最后形成一个分类器:
如果想要分成十类的话,那么就会有0到9这十个位置,这个数据属于哪一类就在哪个位置上是1,而在其它位置上为零。
在 RGB 这个层,每一次把一块核心抽出来,然后厚度加厚,长宽变小,形成分类器:
在 CNN 中有几个重要的概念:
- stride
- padding
- pooling
stride,就是每跨多少步抽取信息。每一块抽取一部分信息,长宽就缩减,但是厚度增加。抽取的各个小块儿,再把它们合并起来,就变成一个压缩后的立方体。
padding,抽取的方式有两种,一种是抽取后的长和宽缩减,另一种是抽取后的长和宽和原来的一样。
pooling,就是当跨步比较大的时候,它会漏掉一些重要的信息,为了解决这样的问题,就加上一层叫pooling,事先把这些必要的信息存储起来,然后再变成压缩后的层:
patch, 就是小方块的长宽的像素,in size 是image的厚度为1,out size是输出的厚度为32:
CNN的结构,分析一张图片时,先放一个CNN的图层,再把这个图层进行一个pooling。这样可以比较好的保持信息,之后再加第二层的CNN和pooling。
导入一个图片之后,先是有它的RGB三个图层,然后把像素块缩小变厚。本来有三个厚度,然后把它变成八个厚度,它的长宽在不断的减小,最后把它们连接在一起:
下面就是用 tensorflow 构建一个 CNN 的代码,
里面主要有4个layer,分别是:
- convolutional layer1 + max pooling;
- convolutional layer2 + max pooling;
- fully connected layer1 + dropout;
- fully connected layer2 to prediction.
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# number 1 to 10 data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
def compute_accuracy(v_xs, v_ys):
global prediction
y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})
return result
# 产生随机变量,符合 normal 分布
# 传递 shape 就可以返回weight和bias的变量
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# 定义2维的 convolutional 图层
def conv2d(x, W):
# stride [1, x_movement, y_movement, 1]
# Must have strides[0] = strides[3] = 1
# strides 就是跨多大步抽取信息
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
# 定义 pooling 图层
def max_pool_2x2(x):
# stride [1, x_movement, y_movement, 1]
# 用pooling对付跨步大丢失信息问题
return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 784]) # 784=28x28
ys = tf.placeholder(tf.float32, [None, 10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs, [-1, 28, 28, 1]) # 最后一个1表示数据是黑白的
# print(x_image.shape) # [n_samples, 28,28,1]
## 1. conv1 layer ##
# 把x_image的厚度1加厚变成了32
W_conv1 = weight_variable([5, 5, 1, 32]) # patch 5x5, in size 1, out size 32
b_conv1 = bias_variable([32])
# 构建第一个convolutional层,外面再加一个非线性化的处理relu
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28x28x32
# 经过pooling后,长宽缩小为14x14
h_pool1 = max_pool_2x2(h_conv1) # output size 14x14x32
## 2. conv2 layer ##
# 把厚度32加厚变成了64
W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64
b_conv2 = bias_variable([64])
# 构建第二个convolutional层
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14x14x64
# 经过pooling后,长宽缩小为7x7
h_pool2 = max_pool_2x2(h_conv2) # output size 7x7x64
## 3. func1 layer ##
# 飞的更高变成1024
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
# [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64]
# 把pooling后的结果变平
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
## 4. func2 layer ##
# 最后一层,输入1024,输出size 10,用 softmax 计算概率进行分类的处理
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
# the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
reduction_indices=[1])) # loss
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
sess = tf.Session()
# important step
sess.run(tf.initialize_all_variables())
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})
if i % 50 == 0:
print(compute_accuracy(
mnist.test.images, mnist.test.labels))
转自:http://www.jianshu.com/p/e2f62043d02b
用 Tensorflow 建立 CNN的更多相关文章
- Tensorflow简单CNN实现
觉得有用的话,欢迎一起讨论相互学习~Follow Me 少说废话多写代码~ """转换图像数据格式时需要将它们的颜色空间变为灰度空间,将图像尺寸修改为同一尺寸,并将标签依 ...
- FaceRank-人脸打分基于 TensorFlow 的 CNN 模型
FaceRank-人脸打分基于 TensorFlow 的 CNN 模型 隐私 因为隐私问题,训练图片集并不提供,稍微可能会放一些卡通图片. 数据集 130张 128*128 张网络图片,图片名: 1- ...
- Tensorflow的CNN教程解析
之前的博客我们已经对RNN模型有了个粗略的了解.作为一个时序性模型,RNN的强大不需要我在这里重复了.今天,让我们来看看除了RNN外另一个特殊的,同时也是广为人知的强大的神经网络模型,即CNN模型.今 ...
- [DL学习笔记]从人工神经网络到卷积神经网络_3_使用tensorflow搭建CNN来分类not_MNIST数据(有一些问题)
3:用tensorflow搭个神经网络出来 为什么用tensorflow呢,应为谷歌是亲爹啊,虽然有些人说caffe更适合图像啊mxnet效率更高等等,但爸爸就是爸爸,Android都能那么火,一个道 ...
- 第三节,TensorFlow 使用CNN实现手写数字识别(卷积函数tf.nn.convd介绍)
上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,这一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即 ...
- tensorflow识别验证码(2)-tensorflow 编写CNN 识别验证码
1. 导入依赖包 #coding:utf-8 from gen_captcha import gen_captcha_text_and_image from gen_captcha import nu ...
- [Tensorflow] Cookbook - CNN
Convolutional Neural Networks (CNNs) are responsible for the major breakthroughs in image recognitio ...
- 6 TensorFlow实现cnn识别手写数字
------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ---------------------------------- ...
- TensorFlow实现CNN
TensorFlow是目前深度学习最流行的框架,很有学习的必要,下面我们就来实际动手,使用TensorFlow搭建一个简单的CNN,来对经典的mnist数据集进行数字识别. 如果对CNN还不是很熟悉的 ...
随机推荐
- 设置VS代码模板
本文URL:http://www.cnblogs.com/CUIT-DX037/p/6770366.html 打开VS安装目录下:\Microsoft Visual Studio 12.0\Commo ...
- 关于response.write(alert(''))弹窗改变页面格式问题
不建议使用 Response.Write("<script>alert('增加年级失败')</script>"); 而使用 Page.ClientScrip ...
- 北航oo作业第四单元小结
1.总结本单元两次作业的架构设计 在我动手开始总结我的设计之前,我看了其他同学已经提交在班级群里的博客,不禁汗颜,我是真的偷懒.其他同学大多使用了新建一个类,用以储存每一个UMLelemet元素的具体 ...
- Android客户端与PC服务端、android服务端通过WiFi通信
前期准备:我的是Linux Mint操作系统(总之折腾的过程中怀疑过是不是系统的问题),首先是要创建wifi热点给android手机使用,这个时候笔记本作为通信的服务器端,android手机作为客户端 ...
- JS实现2048
2048这个游戏是通过对二维数组的操作来实现的,其算法核心如下: (以一行左移为例) c从0开始,遍历当前行中的元素,到<CN-1(CN是一个常量,表示的是游戏格子的列数)结束,每次+1 找到当 ...
- mysql mysqldump 本地数据库导入本地数据库的命令
C:\Users\Administrator>mysqldump -h localhost -P 3306 -u root -proot -n -R --triggers foryou |mys ...
- springMvc 添加定时任务
1.创建定时类 import org.springframework.scheduling.annotation.Scheduled; import org.springframework.stere ...
- 实战:ADFS3.0单点登录系列-集成Exchange
本文将介绍如何将Exchange与ADFS集成,从而实现对于Exchange的SSO. 目录: 实战:ADFS3.0单点登录系列-总览 实战:ADFS3.0单点登录系列-前置准备 实战:ADFS3.0 ...
- Java 发送邮件工具类
1. Mail.java package util; import java.util.Date; import java.util.Properties; import javax.mail.Au ...
- CUDA:Supercomputing for the Masses (用于大量数据的超级计算)-第四节
了解和使用共享内存(1) Rob Farber 是西北太平洋国家实验室(Pacific Northwest National Laboratory)的高级科研人员.他在多个国家级的实验室进行大型并行运 ...