题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=495

题意:

  有n个礼物盒,m个人。

  最开始每个礼物盒中都有一个礼物。

  m个人依次随机选一个盒子,如果有礼物就拿走,然后放回空盒子。

  问你所有人得到总礼物数的期望。

题解:

  三种做法:期望dp,概率dp,推公式

  一、期望dp

    表示状态:

      dp[i] = 该第i个人拿箱子时的总礼物的期望

    找出答案:

      ans = dp[m]

    如何转移:

      对于第i个人,拿到礼物或没拿到。

      (1)φ(没拿到) = dp[i]  P(没拿到) = dp[i]/n

      (2)φ(拿到) = dp[i]+1  P(拿到) = (n-dp[i])/n

      综上:dp[i+1] = dp[i] * dp[i]/n + (dp[i]+1) * (n-dp[i])/n

    边界条件:

      dp[0] = 0

      还没开始拿的时候礼物数为0

  二、概率dp

    表示状态:

      dp[i] = 第i个人拿到礼物的概率

    找出答案:

      ans = ∑ dp[i]

      每个人得到礼物的概率 * 得到礼物的数量(为1) 之和。

    如何转移:

      对于第i个人,拿到礼物或没拿到。

      (1)没拿到:dp[i+1]依然等于dp[i],没拿到礼物的概率为1-dp[i].

      (2)拿到:dp[i+1] = dp[i] - 1/n,拿到的概率为dp[i].

      综上:dp[i+1] = dp[i] * (1 - dp[i]) + (dp[i] - 1/n) * dp[i]

    边界条件:

      dp[0] = 1

      所有盒子里都有礼物,第0个人一定拿到礼物。

  三、推公式

    m个人是独立的。

    对于每个礼物不被人选中的概率为((n-1)/n)^m

    那么不被选中的礼物数的期望就是 n*((n-1)/n)^m

    所以答案就是 n-n*((n-1)/n)^m

AC Code(expectation):

 // state expression:
// dp[i] = expectation
// i: considering ith person
//
// find the answer:
// ans = dp[m]
//
// transferring:
// dp[i+1] = dp[i] * dp[i]/n + (dp[i]+1) * (n-dp[i])/n
//
// boundary:
// dp[0] = 0
#include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_M 100005 using namespace std; int n,m;
double dp[MAX_M]; int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<m;i++)
{
dp[i+]=dp[i]*dp[i]/n+(dp[i]+1.0)*(n-dp[i])/n;
}
printf("%.10f\n",dp[m]);
}

AC Code(probability):

 // state expression:
// dp[i] = probability
// i: ith person got a gift
//
// find the answer:
// sigma dp[i]
//
// transferring:
// dp[i+1] = dp[i] * (1 - dp[i]) + (dp[i] - 1/n) * dp[i]
//
// boundary:
// dp[0] = 1
#include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_M 100005 using namespace std; int n,m;
double ans=;
double dp[MAX_M]; int main()
{
scanf("%d%d",&n,&m);
dp[]=;
for(int i=;i<m;i++)
{
dp[i+]=dp[i]*(1.0-dp[i])+(dp[i]-1.0/n)*dp[i];
ans+=dp[i];
}
printf("%.10f\n",ans);
}

AC Code(公式):

 #include <iostream>
#include <stdio.h>
#include <string.h>
#include <math.h> using namespace std; int n,m; int main()
{
scanf("%d%d",&n,&m);
printf("%.10f\n",n-n*pow((n-1.0)/n,m));
}

SGU 495 Kids and Prizes:期望dp / 概率dp / 推公式的更多相关文章

  1. sgu 495. Kids and Prizes (简单概率dp 正推求期望)

    题目链接 495. Kids and Prizes Time limit per test: 0.25 second(s)Memory limit: 262144 kilobytes input: s ...

  2. SGU 495. Kids and Prizes( 数学期望 )

    题意: N个礼品箱, 每个礼品箱内的礼品只有第一个抽到的人能拿到. M个小孩每个人依次随机抽取一个,  求送出礼品数量的期望值. 1 ≤ N, M ≤ 100, 000 挺水的说..设f(x)表示前x ...

  3. SGU 495. Kids and Prizes

    水概率....SGU里难得的水题.... 495. Kids and Prizes Time limit per test: 0.5 second(s)Memory limit: 262144 kil ...

  4. 495. Kids and Prizes

    http://acm.sgu.ru/problem.php?contest=0&problem=495 学习:当一条路走不通,换一种对象考虑,还有考虑对立面. 495. Kids and Pr ...

  5. 【整理】简单的数学期望和概率DP

    数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么 ...

  6. POJ2096Collecting Bugs(数学期望,概率DP)

    问题: Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material ...

  7. 期望与概率dp

    概率与期望dp 定义: 概率:事件A发生的可能性,计作P(A) 期望:事件A结果的平均大小,记住E(x) ​ E(x)=每种结果的大小与其概率的乘积的和 注意计算概率时需要考虑是否要用容斥原理 期望d ...

  8. 动态规划之经典数学期望和概率DP

    起因:在一场训练赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有\(X,Y,Z\)块钱 ...

  9. 【SGU】495. Kids and Prizes

    http://acm.sgu.ru/problem.php?contest=0&problem=495 题意:N个箱子M个人,初始N个箱子都有一个礼物,M个人依次等概率取一个箱子,如果有礼物则 ...

随机推荐

  1. vue 监听 watch 使用

    1.api https://cn.vuejs.org/v2/api/#watch 有2个配置: (1)深度 watcher deep: true(2)该回调将会在侦听开始之后被立即调用 immedia ...

  2. 【Python】继承

    子类的方法__init__() 创建子类的实例时,Python首先需要完成的任务是给父类所有属性赋值,为此,子类的方法__init__()需要父类施以援手. class Car(): '''模拟汽车' ...

  3. TimeSpan时间间隔

    一个TimeSpan对象都表示一个时间间隔 (持续时间的时间或时间),单位为正数或负数的天数. 小时. 分钟. 秒和小数部分的第二个数字.TimeSpan结构还可以用于表示一天时间,但仅,如果与某一特 ...

  4. C语言重要概念汇总

    作者:郭孝星 微博:郭孝星的新浪微博 邮箱:allenwells@163.com 博客:http://blog.csdn.net/allenwells Github:https://github.co ...

  5. 多域名THINKPHP利用MEMCACHE方式共享SESSION数据(转)

    一.问题起源 稍大一些的网站,通常都会有好几个服务器,每个服务器运行着不同功能的模块,使用不同的二级域名,而一个整体性强的网站,用户系统是统一的,即一套用户名.密码在整个网站的各个模块中都是可以登录使 ...

  6. typedef struct与struct定义结构体

    今天在定义结构体的时候发现typedef struct与struct定义结构体有一些不同之处: 结构也是一种数据类型, 能够使用结构变量, 因此,  象其他 类型的变量一样, 在使用结构变量时要先对其 ...

  7. Android应用的电量消耗和优化的策略

     对于Android移动应用的开发者来说,耗电量的控制一直是个老大难问题.      我们想要控制耗电量,必须要有工具或者方法比较准确的定位应用的耗电情况.下面,我们先来分析下如何计算android应 ...

  8. JavaScript框架——jquery

    1.jQuery编程常识   ————————如何进行jQuery插件开发   2.五星评分——jQuery Raty 一个很棒的jQuery评分插件—jQuery Raty         3.能感 ...

  9. 疑问:使用find_elements_by_ios_predicate定位元素组,获取元素的index没有按照顺序

    通过ios Appium Inspect查看到的元素信息如下: eList=self.driver.find_elements_by_ios_predicate('type == “XCUIEleme ...

  10. 再看GS线程

    再看GS线程 void GameServer::ProcessThreadTry() { ; packet rcvPkt; rcvPkt.data = * ]; //该事件工厂主要创建了两个定时器1. ...