题目背景

终于结束的起点
终于写下句点
终于我们告别
终于我们又回到原点
……

一个个 OIer 的竞赛生涯总是从一场 NOIp 开始,大多也在一场 NOIp 中结束,好似一次次轮回在不断上演。
如果这次 NOIp 是你的起点,那么祝你的 OI 生涯如同夏花般绚烂。
如果这次 NOIp 是你的终点,那么祝你的 OI 回忆宛若繁星般璀璨。
也许这是你最后一次在洛谷上打比赛,也许不是。
不过,无论如何,祝你在一周后的比赛里,好运。

当然,这道题也和轮回有关系。

题目描述

广为人知的斐波拉契数列 \mathrm{fib}(n)fib(n) 是这么计算的

也就是 0, 1, 1, 2, 3, 5, 8, 13 \cdots0,1,1,2,3,5,8,13⋯,每一项都是前两项之和。

小 F 发现,如果把斐波拉契数列的每一项对任意大于 11 的正整数 MM 取模的时候,数列都会产生循环。

当然,小 F 很快就明白了,因为 (\mathrm{fib}(n - 1) \bmod Mfib(n−1)modM) 和 (\mathrm{fib}(n - 2) \bmod M)fib(n−2)modM) 最多只有 M ^ 2M2 种取值,所以在 M ^ 2M2 次计算后一定出现过循环。

甚至更一般地,我们可以证明,无论取什么模数 MM,最终模 MM 下的斐波拉契数列都会是 0, 1, \cdots, 0, 1, \cdots0,1,⋯,0,1,⋯。

现在,给你一个模数 MM,请你求出最小的 n > 0n>0,使得 \mathrm{fib}(n) \bmod M = 0, \mathrm{fib}(n + 1) \bmod M = 1fib(n)modM=0,fib(n+1)modM=1。

输入输出格式

输入格式:

输入一行一个正整数 MM。

输出格式:

输出一行一个正整数 nn。

输入输出样例

输入样例#1: 复制

2
输出样例#1: 复制

3
输入样例#2: 复制

6
输出样例#2: 复制

24

说明

样例 1 解释

斐波拉契数列为 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \cdots0,1,1,2,3,5,8,13,21,34,⋯,在对 22 取模后结果为 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, \cdots0,1,1,0,1,1,0,1,1,0,⋯。

我们可以发现,当 n = 3n=3 时,f(n) \bmod 2= 0, f(n + 1) \bmod 2 = 1f(n)mod2=0,f(n+1)mod2=1,也就是我们要求的 nn 的最小值。

数据范围

对于 30\%30% 的数据,M \leq 18M≤18;

对于 70\%70% 的数据,M \leq 2018M≤2018;

对于 100\%100% 的数据,2 \leq M \leq 706150=2≤M≤706150=0xAC666

提示

如果你还不知道什么是取模 (\bmod)(mod),那我也很乐意告诉你,模运算是求整数除法得到的余数,也就是竖式除法最终「除不尽」的部分,也即a \bmod M =k \iff a = bM + k\ (M > 0, 0 \leq k < M)amodM=k⟺a=bM+k (M>0,0≤k<M)其中 a, b, ka,b,k 都是非负整数。

如果你使用 C / C++,你可以使用 % 来进行模运算。

如果你使用 Pascal,你可以使用 mod 来进行模运算。

题解

如果这次 NOIp 是你的终点,那么祝你的 OI 回忆宛若繁星般璀璨。

哈哈哈哈为什么要一上来就放催泪弹啊一点都不感动嘤嘤嘤嘤


一开始淡定的打表找规律,发现跟因子有些关系,大概就是对很多数而言是质因子的f乘起来再乘反复出现的质因子之类......

然后不想肝了挂了个机跑1~706150的答案,记了个最大值,好像最大值只是个211多少的七位数......

那还规律个鬼啊,暴力啊!

 /*
qwerta
P4994 终于结束的起点 Accepted
100
代码 C++,0.25KB
比赛 【LGR-055】洛谷11月月赛
提交时间 2018-11-04 09:08:05
耗时/内存 70ms, 808KB
*/
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int main()
{
int m;
scanf("%d",&m);
int f0=,f1=;
for(long long n=;;++n)
{
int x=(f0+f1)%m;
if(f1==&&x==)
{
cout<<n;
break;
}
f0=f1;
f1=x;
}
return ;
}

「P4994」「洛谷11月月赛」 终于结束的起点(枚举的更多相关文章

  1. 「P4996」「洛谷11月月赛」 咕咕咕(数论

    题目描述 小 F 是一个能鸽善鹉的同学,他经常把事情拖到最后一天才去做,导致他的某些日子总是非常匆忙. 比如,时间回溯到了 2018 年 11 月 3 日.小 F 望着自己的任务清单: 看 iG 夺冠 ...

  2. 「LuoguP4995」「洛谷11月月赛」 跳跳!(贪心

    题目描述 你是一只小跳蛙,你特别擅长在各种地方跳来跳去. 这一天,你和朋友小 F 一起出去玩耍的时候,遇到了一堆高矮不同的石头,其中第 ii 块的石头高度为 h_ihi​,地面的高度是 h_0 = 0 ...

  3. 洛谷11月月赛(284pts rank85)

    https://www.luogu.org/contestnew/show/12006 我是比赛完后在去写的 这是我第一次打洛谷月赛,之前一次是比赛完才去看而且写了第一题就没写后面的了 284分,太水 ...

  4. 洛谷11月月赛题解(A-C)

    心路历程 辣鸡T3卡我1.5h题意,要不是最后nlh跟我解释了一下大样例估计这次是真凉透了.. A P4994 终于结束的起点 打出暴力来发现跑的过最大数据?? 保险起见还是去oeis了一波,然后被告 ...

  5. 洛谷11月月赛round.1

    太感动了#2 thwfhk 240 (801ms) 100 100 40   又一张明信片,话说10月的怎么还没收到   P2246 SAC#1 - Hello World(升级版) 题目背景 一天, ...

  6. 洛谷11月月赛round.2

    P3414 SAC#1 - 组合数 题目背景 本题由世界上最蒟蒻最辣鸡最撒比的SOL提供. 寂月城网站是完美信息教室的官网.地址:http://191.101.11.174/mgzd . 题目描述 辣 ...

  7. NOIP模拟赛(洛谷11月月赛)

    T1  终于结束的起点 题解:枚举啊... 斐波那契数 第46个爆int,第92个爆long long.... 发现结果一般是m的几倍左右....不用担心T. #include<iostream ...

  8. 【CSGRound2】逐梦者的初心(洛谷11月月赛 II & CSG Round 2 T3)

    题目描述# 给你一个长度为\(n\)的字符串\(S\). 有\(m\)个操作,保证\(m≤n\). 你还有一个字符串\(T\),刚开始为空. 共有两种操作. 第一种操作: 在字符串\(T\)的末尾加上 ...

  9. 最大字段和&洛谷11月月赛DIV2 T1

    蒟蒻只能打一打DIV2的基础题 太卑微了 这道题的本质其实是再建一个数组,如果s串i位置是0那么就给a[i]赋值为1,表示要累加个数,如果是1那么就把a[i]赋值为-1,表示个数减一,最后求最大子段和 ...

随机推荐

  1. List中remove元素的理解

    今天写了个简单的list中remove元素的方法,结果报错... List<String> ll = Arrays.asList("1","2",& ...

  2. u-boot-2014-04 网络不通解决一例

    不久前我移植了u-boot-214-04到Tq2440的板子上,基本功能都有了,网卡也可以使用了.有一天打算把u-boot-2010-06也也一直到tq2440上,移植完后发现u-boot-214-0 ...

  3. 深入Asyncio(十一)优雅地开始与结束

    Startup and Shutdown Graceful 大部分基于asyncio的程序都是需要长期运行.基于网络的应用,处理这种应用的正确开启与关闭存在惊人的复杂性. 开启相对来说更简单点,常规做 ...

  4. Emgu安装配置及使用

    前言:项目需要,需使用图像处理来完成机械臂从运动的皮带上抓取物体的功能,所以又重拾视觉与图像处理内容. 内容:Emgu是OpenCV的一个跨平台的.NET封装,结构如下图所示: 下载地址:http:/ ...

  5. delphi视频聊天

    用Delphi开发视频聊天软件 一.引言 我们知道视频聊天软件的关键技术在于采集视频,并实时传输给聊天软件在线的人.对于视频的采集,这里采用微软公司的关于数字视频的一个软件包VFW(Video for ...

  6. 【BZOJ2083】[Poi2010]Intelligence test 二分

    [BZOJ2083][Poi2010]Intelligence test Description 霸中智力测试机构的一项工作就是按照一定的规则删除一个序列的数字,得到一个确定的数列.Lyx很渴望成为霸 ...

  7. 【BZOJ3630】[JLOI2014]镜面通道 几何+最小割

    [BZOJ3630][JLOI2014]镜面通道 Description 在一个二维平面上,有一个镜面通道,由镜面AC,BD组成,AC,BD长度相等,且都平行于x轴,B位于(0,0).通道中有n个外表 ...

  8. 错误: 非法字符: '\ufeff' 解决方案|错误: 需要class, interface或enum

    解决方案,把文件用Editplus打开,UTF-8+BOM编码的文件转为普通的UTF-8文件

  9. Linux入门基础(二)——cp、nano命令

  10. TCP黏包问题

    什么是黏包?什么情况下会出现黏包的情况?该如何避免黏包的情况? 首先来看一个例子 #服务端 import time from socket import * server = socket(AF_IN ...