题目背景

终于结束的起点
终于写下句点
终于我们告别
终于我们又回到原点
……

一个个 OIer 的竞赛生涯总是从一场 NOIp 开始,大多也在一场 NOIp 中结束,好似一次次轮回在不断上演。
如果这次 NOIp 是你的起点,那么祝你的 OI 生涯如同夏花般绚烂。
如果这次 NOIp 是你的终点,那么祝你的 OI 回忆宛若繁星般璀璨。
也许这是你最后一次在洛谷上打比赛,也许不是。
不过,无论如何,祝你在一周后的比赛里,好运。

当然,这道题也和轮回有关系。

题目描述

广为人知的斐波拉契数列 \mathrm{fib}(n)fib(n) 是这么计算的

也就是 0, 1, 1, 2, 3, 5, 8, 13 \cdots0,1,1,2,3,5,8,13⋯,每一项都是前两项之和。

小 F 发现,如果把斐波拉契数列的每一项对任意大于 11 的正整数 MM 取模的时候,数列都会产生循环。

当然,小 F 很快就明白了,因为 (\mathrm{fib}(n - 1) \bmod Mfib(n−1)modM) 和 (\mathrm{fib}(n - 2) \bmod M)fib(n−2)modM) 最多只有 M ^ 2M2 种取值,所以在 M ^ 2M2 次计算后一定出现过循环。

甚至更一般地,我们可以证明,无论取什么模数 MM,最终模 MM 下的斐波拉契数列都会是 0, 1, \cdots, 0, 1, \cdots0,1,⋯,0,1,⋯。

现在,给你一个模数 MM,请你求出最小的 n > 0n>0,使得 \mathrm{fib}(n) \bmod M = 0, \mathrm{fib}(n + 1) \bmod M = 1fib(n)modM=0,fib(n+1)modM=1。

输入输出格式

输入格式:

输入一行一个正整数 MM。

输出格式:

输出一行一个正整数 nn。

输入输出样例

输入样例#1: 复制

2
输出样例#1: 复制

3
输入样例#2: 复制

6
输出样例#2: 复制

24

说明

样例 1 解释

斐波拉契数列为 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \cdots0,1,1,2,3,5,8,13,21,34,⋯,在对 22 取模后结果为 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, \cdots0,1,1,0,1,1,0,1,1,0,⋯。

我们可以发现,当 n = 3n=3 时,f(n) \bmod 2= 0, f(n + 1) \bmod 2 = 1f(n)mod2=0,f(n+1)mod2=1,也就是我们要求的 nn 的最小值。

数据范围

对于 30\%30% 的数据,M \leq 18M≤18;

对于 70\%70% 的数据,M \leq 2018M≤2018;

对于 100\%100% 的数据,2 \leq M \leq 706150=2≤M≤706150=0xAC666

提示

如果你还不知道什么是取模 (\bmod)(mod),那我也很乐意告诉你,模运算是求整数除法得到的余数,也就是竖式除法最终「除不尽」的部分,也即a \bmod M =k \iff a = bM + k\ (M > 0, 0 \leq k < M)amodM=k⟺a=bM+k (M>0,0≤k<M)其中 a, b, ka,b,k 都是非负整数。

如果你使用 C / C++,你可以使用 % 来进行模运算。

如果你使用 Pascal,你可以使用 mod 来进行模运算。

题解

如果这次 NOIp 是你的终点,那么祝你的 OI 回忆宛若繁星般璀璨。

哈哈哈哈为什么要一上来就放催泪弹啊一点都不感动嘤嘤嘤嘤


一开始淡定的打表找规律,发现跟因子有些关系,大概就是对很多数而言是质因子的f乘起来再乘反复出现的质因子之类......

然后不想肝了挂了个机跑1~706150的答案,记了个最大值,好像最大值只是个211多少的七位数......

那还规律个鬼啊,暴力啊!

 /*
qwerta
P4994 终于结束的起点 Accepted
100
代码 C++,0.25KB
比赛 【LGR-055】洛谷11月月赛
提交时间 2018-11-04 09:08:05
耗时/内存 70ms, 808KB
*/
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int main()
{
int m;
scanf("%d",&m);
int f0=,f1=;
for(long long n=;;++n)
{
int x=(f0+f1)%m;
if(f1==&&x==)
{
cout<<n;
break;
}
f0=f1;
f1=x;
}
return ;
}

「P4994」「洛谷11月月赛」 终于结束的起点(枚举的更多相关文章

  1. 「P4996」「洛谷11月月赛」 咕咕咕(数论

    题目描述 小 F 是一个能鸽善鹉的同学,他经常把事情拖到最后一天才去做,导致他的某些日子总是非常匆忙. 比如,时间回溯到了 2018 年 11 月 3 日.小 F 望着自己的任务清单: 看 iG 夺冠 ...

  2. 「LuoguP4995」「洛谷11月月赛」 跳跳!(贪心

    题目描述 你是一只小跳蛙,你特别擅长在各种地方跳来跳去. 这一天,你和朋友小 F 一起出去玩耍的时候,遇到了一堆高矮不同的石头,其中第 ii 块的石头高度为 h_ihi​,地面的高度是 h_0 = 0 ...

  3. 洛谷11月月赛(284pts rank85)

    https://www.luogu.org/contestnew/show/12006 我是比赛完后在去写的 这是我第一次打洛谷月赛,之前一次是比赛完才去看而且写了第一题就没写后面的了 284分,太水 ...

  4. 洛谷11月月赛题解(A-C)

    心路历程 辣鸡T3卡我1.5h题意,要不是最后nlh跟我解释了一下大样例估计这次是真凉透了.. A P4994 终于结束的起点 打出暴力来发现跑的过最大数据?? 保险起见还是去oeis了一波,然后被告 ...

  5. 洛谷11月月赛round.1

    太感动了#2 thwfhk 240 (801ms) 100 100 40   又一张明信片,话说10月的怎么还没收到   P2246 SAC#1 - Hello World(升级版) 题目背景 一天, ...

  6. 洛谷11月月赛round.2

    P3414 SAC#1 - 组合数 题目背景 本题由世界上最蒟蒻最辣鸡最撒比的SOL提供. 寂月城网站是完美信息教室的官网.地址:http://191.101.11.174/mgzd . 题目描述 辣 ...

  7. NOIP模拟赛(洛谷11月月赛)

    T1  终于结束的起点 题解:枚举啊... 斐波那契数 第46个爆int,第92个爆long long.... 发现结果一般是m的几倍左右....不用担心T. #include<iostream ...

  8. 【CSGRound2】逐梦者的初心(洛谷11月月赛 II & CSG Round 2 T3)

    题目描述# 给你一个长度为\(n\)的字符串\(S\). 有\(m\)个操作,保证\(m≤n\). 你还有一个字符串\(T\),刚开始为空. 共有两种操作. 第一种操作: 在字符串\(T\)的末尾加上 ...

  9. 最大字段和&洛谷11月月赛DIV2 T1

    蒟蒻只能打一打DIV2的基础题 太卑微了 这道题的本质其实是再建一个数组,如果s串i位置是0那么就给a[i]赋值为1,表示要累加个数,如果是1那么就把a[i]赋值为-1,表示个数减一,最后求最大子段和 ...

随机推荐

  1. maven打包时无法加载lib下的jar

    © 版权声明:本文为博主原创文章,转载请注明出处 问题描述: 项目在本地部署没有问题,但是使用maven打包时报错: ***(引用jar中某个类的的路径) 不存在 ***(某个java类中的某行某列) ...

  2. URL Handle in Swift (一) -- URL 分解

    更新时间: 2018-6-6 在程序开发过程之中, 我们总是希望模块化处理某一类相似的事情. 在 ezbuy 开发中, 我接触到了对于 URL 处理的优秀的代码, 学习.改进.记录下来.希望对你有所帮 ...

  3. firework压缩图片类似于GD库中压缩图片的思路

    1.先建一张空白图片, 2.再把需要压缩的图片拖上去, 3.符合画布 4.调到需要的大小

  4. jQuery的Pagenation分页插件。

    插件简介 此jQuery插件为Ajax分页插件,一次性加载,故分页切换时无刷新与延迟,如果数据量较大不建议用此方法,因为加载会比较慢. 原插件CSS不太合理,使用浮动,故无法方便实现左右方向的定位,且 ...

  5. Boost.Asio c++ 网络编程翻译(11)

    *_at方法 这些方法在一个流上面做随机存取操作.你来指定read和write操作从什么地方開始(offset): async_read_at(stream, offset, buffer [, co ...

  6. 如何利用JQuery获取iframe内联框架对象?

    parent.$("#iframeID").get(0).contentWindow; 父.$("选择器").get(0).contentWindow; get ...

  7. 初识ASP.net-牛腩新闻公布系统

           在做牛腩新闻公布的系统的时候,总有一种感觉就是:我仍然在敲机房收费系统,唯一不同的一点.就是敲机房收费的时候,用户界面是是自己手动画界面.而,在牛腩新闻公布系统中,用户界面,却是须要自己 ...

  8. Maven 编译

    pom.xml 添加插件 <build> <plugins> <plugin> <groupId>org.apache.maven.plugins< ...

  9. python 基础 4.3 高阶函数下和匿名函数

    一 .匿名函数 顾名思议就是没有名字的函数,那为什么要设立匿名函数,他有什么作用呢?lambda 函数就是一种快速定义单行的最小函数,可以用在任何需要函数的地方.   常规版: def fun(x,y ...

  10. 【BZOJ3217】ALOEXT 替罪羊树+Trie树

    [BZOJ3217]ALOEXT Description taorunz平时最喜欢的东西就是可移动存储器了……只要看到别人的可移动存储器,他总是用尽一切办法把它里面的东西弄到手. 突然有一天,taor ...