题意:给出一个二叉树,每条边上有一定的边权,并且剪掉一些树枝,求留下 Q 条树枝的最大边权和。  ( 节点数 n ≤100,留下的枝条树 Q ≤ n ,所有边权和 ∑w[i] ≤30000 )

  细节:对于一棵子树 u 来说如果剪掉 u 节点上方的树枝,则该子树内的所有树枝都相当于被剪去。

  分析:由于是二叉树,所以转移就与左右子树有关,其次我们需要求出最大的边权和,而且需要记录当前子树保留了多少枝条。

      所以 Dp 的状态:dp[u][j] 表示以 u 为根保留了 j 条树枝(包括 u 的前一条树枝)

      转移: dp[u][j] = max( dp[lx[u]][k] + dp[ly[u]][j-k-1] + Pre[u], dp[u][j] ) lx[u]表示 u 的左子树,ly[u]表示 u 的右子树,Pre[u]表示 u 的前一条边

                      ( j≤size[u],k≤min( size[lx[u]] , j-1) )size[u]表示以 u 为子树的节点个数

  

  代码如下:

#include <bits/stdc++.h>
#define MAXN 105
using namespace std; struct edge{
int to, Next, val;
}Right[MAXN<<];
int Begin[MAXN], f[MAXN][MAXN], Pre[MAXN], size[MAXN], n, q, cnt, lx[MAXN], ly[MAXN]; inline void add_edge(int x, int y, int z){
Right[++cnt].to=y;
Right[cnt].Next=Begin[x];
Begin[x]=cnt;
Right[cnt].val=z;
} void build(int u, int fa){
size[u]=;
for (int i=Begin[u]; i; i=Right[i].Next){
int v=Right[i].to;
if (v==fa) continue;
Pre[v]=Right[i].val;
if (!lx[u]) lx[u]=v;
else ly[u]=v;
build(v, u);
size[u]+=size[v];
}
} void solve(int u, int fa){
for (int i=Begin[u]; i; i=Right[i].Next){
int v=Right[i].to;
if (v==fa) continue;
solve(v, u);
for (int j=; j<=size[u]; j++)
for (int k=; k<=min(size[lx[u]], j-); k++)
f[u][j]=max(f[u][j], f[lx[u]][k]+f[ly[u]][j-k-]+Pre[u]);
}
} int main(){
scanf("%d%d", &n, &q);
for (int i=; i<n; i++){
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
add_edge(x, y, z);
add_edge(y, x, z);
}
build(, );
for (int i=; i<=n; i++) f[i][]=Pre[i];
solve(, );
printf("%d\n", f[][q+]);
return ;
}

二叉苹果树——树形Dp(由根到左右子树的转移)的更多相关文章

  1. 【P2015】二叉苹果树 (树形DP分组背包)

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 现在这颗树枝条太多了,需要剪枝.但是 ...

  2. P2015 二叉苹果树[树形dp+背包]

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...

  3. P2015 二叉苹果树 (树形动规)

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...

  4. Codevs1378选课[树形DP|两种做法(多叉转二叉|树形DP+分组背包)---(▼皿▼#)----^___^]

    题目描述 Description 学校实行学分制.每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分.学校开设了N(N<300)门的选修课程,每个学生可选课程的数量M是给定的.学生选修 ...

  5. 【Luogu】P2015二叉苹果树(DP,DFS)

    题目链接 设f[i][j][k]表示给以i为根节点的子树分配j条可保留的树枝名额的时候,状态为k时能保留的最多苹果. k有三种情况. k=1:我只考虑子树的左叉,不考虑子树的右叉,此时子树能保留的最多 ...

  6. [luoguP2015] 二叉苹果树(DP)

    传送门 貌似是个树形背包... 好像吧.. f[i][j]表示节点i选条边的最优解 #include <cstdio> #include <cstring> #include ...

  7. 二叉苹果树|codevs5565|luoguP2015|树形DP|Elena

    二叉苹果树 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的 ...

  8. P2015 二叉苹果树,树形dp

    P2015 二叉苹果树 题目大意:有一棵二叉树性质的苹果树,每一根树枝上都有着一些苹果,现在要去掉一些树枝,只留下q根树枝,要求保留最多的苹果数(去掉树枝后不一定是二叉树) 思路:一开始就很直接的想到 ...

  9. [Luogu2015]二叉苹果树(树形dp)

    [Luogu2015] 二叉苹果树 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. ...

随机推荐

  1. 持续集成~Jenkins构建GitHub项目的实现

    有了前两讲的基础,这回我们就可以把github上的项目做到CI(jenkins)里了,让它自动去集成部署,持续集成~Jenkins里的NuGet和MSBuild插件,持续集成~Jenkins里的pow ...

  2. 「干货分享」模块化编程和maven配置实践一则

    ​ 封面 说到模块化编程,对我个人而言首先起因于团队协作的需要,也就是组织架构结构特点来决定,而不是跟风求得自我认同,看看我们团队的组织结构: ​ 其中: 基础平台部职责: 1.AI实验室:语音,图像 ...

  3. Mysql 函数创建

    DELIMITER $$DROP FUNCTION IF EXISTS `shouy`.`Sel_FUNC_GOODS_type` $$ CREATE FUNCTION `shouy`.`Sel_FU ...

  4. 数据库(数据库、表及表数据、SQL语句)

    数据库MYSQL 今日内容介绍 u MySQL数据库 u SQL语句 第1章 数据库 1.1 数据库概述 l 什么是数据库 数据库就是存储数据的仓库,其本质是一个文件系统,数据按照特定的格式将数据存储 ...

  5. getuser

    Help on function getuser in module getpass: getuser()    Get the username from the environment or pa ...

  6. 宿主机Windows访问虚拟机Linux文件(二)

    上一篇文章中详细讲述FTP服务(基于文件传输协议的服务),本文则介绍另一种能够实现此功能Telnet(Telecommunications network 远程登陆)服务.本文介绍的telnet我常用 ...

  7. 小常识:变量的修饰符和DEMO

    public static string ss = "这是全局静态变量";//生命周期:程序结束为止,可以修改 public string s = "这是全局变量&quo ...

  8. UVALive 3026 Period (KMP算法简介)

    kmp的代码很短,但是不太容易理解,还是先说明一下这个算法过程吧. 朴素的字符串匹配大家都懂,但是效率不高,原因在哪里? 匹配过程没有充分利用已经匹配好的模版的信息,比如说, i是文本串当前字符的下标 ...

  9. Array - Two Sum

    import java.util.HashMap; import java.util.Map; /** * 分析: * 普通实现-嵌套循环两次,时间O(n2),空间O(1) * 复杂实现-循环一次,时 ...

  10. 七、vue中将token存到cookie

    使用js-cookie工具: 1.npm i js-cookie //安装2.import Cookies from 'js-cookie' //引用 // 存入cookie:Cookies.set( ...