0 - 定义

  $Sigmoid$函数是一个在生物学中常见的S型函数,也称为$S$型生长曲线。在信息科学中,由于其单增以及反函数单增等性质,$Sigmoid$函数常被用作神经网络的阈值函数,将变量映射到0,1之间。

  其曲线如下图:

        

1 - 导数

$$\begin{align*}
sigmoid^{'}(x)&=(\frac{1}{1+e^{-x}})^{'} \\
&=\frac{1}{1+e^{-x}}e^{-x}(-1)\\
&=\frac{e^{-x}}{(1+e^{-x})^2}\\
&=\frac{1}{1+e^{-x}}(1-\frac{1}{1+e^{-x}})\\
&=sigmoid(x)(1-sigmoid(x))
\end{align*}$$

2 - 参考资料

https://baike.baidu.com/item/Sigmoid函数/7981407?fr=aladdin

激活函数——sigmoid函数(理解)的更多相关文章

  1. Sigmoid函数与Softmax函数的理解

    1. Sigmod 函数 1.1 函数性质以及优点 其实logistic函数也就是经常说的sigmoid函数,它的几何形状也就是一条sigmoid曲线(S型曲线).               其中z ...

  2. 交叉熵代价函数——当我们用sigmoid函数作为神经元的激活函数时,最好使用交叉熵代价函数来替代方差代价函数,以避免训练过程太慢

    交叉熵代价函数 machine learning算法中用得很多的交叉熵代价函数. 1.从方差代价函数说起 代价函数经常用方差代价函数(即采用均方误差MSE),比如对于一个神经元(单输入单输出,sigm ...

  3. 激活函数Sigmoid、Tanh、ReLu、softplus、softmax

    原文地址:https://www.cnblogs.com/nxf-rabbit75/p/9276412.html 激活函数: 就是在神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端. 常见 ...

  4. 深度学习:Sigmoid函数与损失函数求导

    1.sigmoid函数 ​ sigmoid函数,也就是s型曲线函数,如下: 函数: 导数: ​ 上面是我们常见的形式,虽然知道这样的形式,也知道计算流程,不够感觉并不太直观,下面来分析一下. 1.1 ...

  5. 笔记+R︱Logistics建模简述(logit值、sigmoid函数)

    本笔记源于CDA-DSC课程,由常国珍老师主讲.该训练营第一期为风控主题,培训内容十分紧凑,非常好,推荐:CDA数据科学家训练营 ---------------------------------- ...

  6. Logstic回归采用sigmoid函数的原因

    ##Logstic回归采用sigmoid函数的原因(sigmoid函数能表示二项分布概率的原因) sigmoid函数: ![](http://images2017.cnblogs.com/blog/1 ...

  7. TensorFlow激活函数+归一化-函数

    激活函数的作用如下-引用<TensorFlow实践>: 这些函数与其他层的输出联合使用可以生成特征图.他们用于对某些运算的结果进行平滑或者微分.其目标是为神经网络引入非线性.曲线能够刻画出 ...

  8. ReLU 和sigmoid 函数对比

    详细对比请查看:http://www.zhihu.com/question/29021768/answer/43517930 . 激活函数的作用: 是为了增加神经网络模型的非线性.否则你想想,没有激活 ...

  9. 神经网络激活函数sigmoid relu tanh 为什么sigmoid 容易梯度消失

    https://blog.csdn.net/danyhgc/article/details/73850546 什么是激活函数 为什么要用 都有什么 sigmoid ,ReLU, softmax 的比较 ...

随机推荐

  1. SQL FORMAT() 函数

    FORMAT() 函数 FORMAT 函数用于对字段的显示进行格式化. SQL FORMAT() 语法 SELECT FORMAT(column_name,format) FROM table_nam ...

  2. SQLi “百度杯”CTF比赛 九月场

    试一下1=1 发下username为空,说明哪里出问题了,是没有注入吗?还是被过滤了?试一下#号的url编码%23 编码后,返回的结果是对的,证明是的,有注入 1=2就返回空了 看了wp,就觉得自己的 ...

  3. 在Bootstrap开发框架的工作流模块中实现流程完成后更新资料状态处理

    在开发查看流程表单明细的时候,在Web界面中,我们往往通过使用@RenderPage实现页面内容模块化的隔离,减少复杂度,因此把一些常用的如审批.撤销.会签.阅办等等的流程步骤都放到了通用处理的页面V ...

  4. Redis入门之增删改查等常用命令总结

    Redis是用C语言实现的,一般来说C语言实现的程序"距离"操作系统更近,执行速度相对会更快. Redis使用了单线程架构,预防了多线程可能产生的竞争问题. 作者对于Redis源代 ...

  5. 最简单易懂的Spring Security 身份认证流程讲解

    最简单易懂的Spring Security 身份认证流程讲解 导言 相信大伙对Spring Security这个框架又爱又恨,爱它的强大,恨它的繁琐,其实这是一个误区,Spring Security确 ...

  6. 微信小程序开发编程手记20190303

    三元表达式: 运算: 引号与花括号之间如果有空格,将被视为字符串: pages页面容器标签: vscode:

  7. Python——迭代器

    一.概述 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退. 二.可迭代的对象 序列:字符串.列表.元组 非序列:字典.文件 三 ...

  8. Python future使用

    Python的每个新版本都会增加一些新的功能,或者对原来的功能作一些改动.有些改动是不兼容旧版本的,也就是在当前版本运行正常的代码,到下一个版本运行就可能不正常了. 从Python 2.7到Pytho ...

  9. LOJ #2719. 「NOI2018」冒泡排序(组合数 + 树状数组)

    题意 给你一个长为 \(n\) 的排列 \(p\) ,问你有多少个等长的排列满足 字典序比 \(p\) 大 : 它进行冒泡排序所需要交换的次数可以取到下界,也就是令第 \(i\) 个数为 \(a_i\ ...

  10. license.json

    {"license":{"uid":"5359f3d1-8c8c-462b-a17b-b7eb0c3ddb8f","type&qu ...