master-worker模式是一种并行计算模式,分为master进程和worker进程两个部分,master是担任总管角色,worker才是执行具体任务的地方。

  总体流程应该是这样的:

具体一点,代码实现流程应该是这样的:

client:

import java.util.Random;

public class Main {

    public static void main(String[] args) {

        Master master = new Master(new Worker(), 20);//并发数20,也就是有20个Worker在工作

        Random r = new Random();
for(int i = 1; i <= 100; i++){//总共有100个任务
Task t = new Task();
t.setId(i);
t.setPrice(r.nextInt(1000));
master.submit(t);//提交任务,向WorkerQueue<Task> 中加入元素
}
master.execute();//启动所有的worker
long start = System.currentTimeMillis(); while(true){
if(master.isComplete()){//100个任务执行完成
long end = System.currentTimeMillis() - start;
int priceResult = master.getResult();//获取所有任务的执行结果
System.out.println("最终结果:" + priceResult + ", 执行时间:" + end);
break;
}
} }
}

Master:

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue; public class Master { //1 有一个盛放任务的容器
private ConcurrentLinkedQueue<Task> workQueue = new ConcurrentLinkedQueue<Task>(); //2 需要有一个盛放worker的集合
private HashMap<String, Thread> workers = new HashMap<String, Thread>(); //3 需要有一个盛放每一个worker执行任务的结果集合
private ConcurrentHashMap<String, Object> resultMap = new ConcurrentHashMap<String, Object>(); //4 构造方法
public Master(Worker worker , int workerCount){
worker.setWorkQueue(this.workQueue);
worker.setResultMap(this.resultMap); for(int i = 0; i < workerCount; i ++){
this.workers.put(Integer.toString(i), new Thread(worker));
} } //5 需要一个提交任务的方法
public void submit(Task task){
this.workQueue.add(task);
} //6 需要有一个执行的方法,启动所有的worker方法去执行任务
public void execute(){
for(Map.Entry<String, Thread> me : workers.entrySet()){
me.getValue().start();
}
} //7 判断是否运行结束的方法
public boolean isComplete() {
for(Map.Entry<String, Thread> me : workers.entrySet()){
if(me.getValue().getState() != Thread.State.TERMINATED){
return false;
}
}
return true;
} //8 计算结果方法
public int getResult() {
int priceResult = 0;
for(Map.Entry<String, Object> me : resultMap.entrySet()){
priceResult += (Integer)me.getValue();
}
return priceResult;
}

Worker:

 import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue; public class Worker implements Runnable { private ConcurrentLinkedQueue<Task> workQueue;
private ConcurrentHashMap<String, Object> resultMap; public void setWorkQueue(ConcurrentLinkedQueue<Task> workQueue) {
this.workQueue = workQueue;
} public void setResultMap(ConcurrentHashMap<String, Object> resultMap) {
this.resultMap = resultMap;
} @Override
public void run() {
while(true){
Task input = this.workQueue.poll();
if(input == null) break;
Object output = handle(input);
this.resultMap.put(Integer.toString(input.getId()), output);
}
} private Object handle(Task input) {
Object output = null;
try {
//处理任务的耗时。。 比如说进行操作数据库。。。
Thread.sleep(500);
output = input.getPrice();
} catch (InterruptedException e) {
e.printStackTrace();
}
return output;
} }

Task:

public class Task {

    private int id;
private int price ;
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public int getPrice() {
return price;
}
public void setPrice(int price) {
this.price = price;
} }

架构师养成记--10.master-worker模式的更多相关文章

  1. 架构师养成记--9.future模式讲解

    什么是future模式呢?解释这个概念之前我们先来了解一个场景吧,财务系统的结账功能,这个功能可能是每个月用一次,在这一个月中相关的数据量已经积累得非常大,这一个功能需要调用好几个存储过程来完成.假如 ...

  2. 架构师养成记--35.redis集群搭建

    前记:redis哨兵经验之谈.哨兵做主从切换可能要花费一两秒,这一两秒可能会丢失很多数据.解决方法之一是在java代码中做控制,try catch 到 链接断开的异常就sleep 一两秒钟再conti ...

  3. 架构师养成记--11.Executor概述

    常用方法 Executors.newFiexdPool(int nThreads);固定线程数量的线程池: Executors.newSingleThreadExecutor();单个线程的线程池: ...

  4. 架构师养成记--8.Queue

    一.ConcurrentLinkedQueue 是一个适合在高并发场景下,无锁,无界的,先进先出原则.不允许为null值,add().offer()加入元素,这两个方法没区别:pull().peek( ...

  5. 架构师养成记--15.Disruptor并发框架

    一.概述 disruptor对于处理并发任务很擅长,曾有人测过,一个线程里1s内可以处理六百万个订单,性能相当感人. 这个框架的结构大概是:数据生产端 --> 缓存 --> 消费端 缓存中 ...

  6. 架构师养成记--6.单例和多线程、ThreadLocal

    一.ThreadLocal 使用wait/notify方式实现的线程安全,性能将受到很大影响.解决方案是用空间换时间,不用锁也能实现线程安全. 来看一个小例子,在线程内的set.get就是thread ...

  7. 架构师养成记--4.volatile关键字

    volatile修饰的变量可在多个线程间可见. 如下代码,在子线程运行期间主线程修改属性值并不对子线程产生影响,原因是子线程有自己独立的内存空间,其中有主内存中的变量副本. public class ...

  8. 架构师养成记--3.synchronized细节问题

    一.synchronized有锁重入的特点,某个线程得到对象的锁后,再次请求此对象可以再次得到改对象的锁.如下示例,在method1中调用method2,在method2中调用method3,而met ...

  9. 架构师养成记--34.Redis持久化

    ---恢复内容开始--- redis是一个支持持久化的内存数据库,也就是搜redis需要经常将内存中的数据同步到硬盘来保证持久化.redis持久化有两种方式. snapshotting(快照)默认方式 ...

随机推荐

  1. 使用Maven私服的好处

    1.Maven仓库的分类 本地仓库:当Maven执行编译或测试时,如果需要使用到依赖文件,它总是基于坐标使用本地仓库的依赖文件.默认情况下,不管Linux还是Windows,每个用户在自己的用户目录下 ...

  2. 每天一个设计模式-4 单例模式(Singleton)

    每天一个设计模式-4 单例模式(Singleton) 1.实际生活的例子 有一天,你的自行车的某个螺丝钉松了,修车铺离你家比较远,而附近的五金店有卖扳手:因此,你决定去五金店买一个扳手,自己把螺丝钉固 ...

  3. SSH远程登录原理与运用

    SSH是每一台Linux电脑的标准配置. 随着Linux设备从电脑逐渐扩展到手机.外设和家用电器,SSH的使用范围也越来越广.不仅程序员离不开它,很多普通用户也每天使用. SSH具备多种功能,可以用于 ...

  4. 自助式BI为何能取代传统BI,逐渐占据商业智能市场?

    前言:未来的时代将由数据勾画,未来的BI将是自助BI的时代 随着数据爆发式增长,像ERP.OA.CRM等系统在企业运用的越来越多.这些系统的使用必然会产生很多的数据,比如在产品加工设计测试维护过程中产 ...

  5. android 之 启动画面的两种方法

    现在,当我们打开任意的一个app时,其中的大部分都会显示一个启动界面,展示本公司的logo和当前的版本,有的则直接把广告放到了上面.启动画面的可以分为两种设置方式:一种是两个Activity实现,和一 ...

  6. [Erlang 0116] 当我们谈论Erlang Maps时,我们谈论什么 Part 1

         Erlang 增加 Maps数据类型并不是很突然,因为这个提议已经进行了2~3年之久,只不过Joe Armstrong老爷子最近一篇文章Big changes to Erlang掀起不小了风 ...

  7. Percona TokuDB

    Percona TokuDB Percona TokuDB 1.     TokuDB说明 2.     TokuDB安装 3.     使用TokuDB 3.1 快速插入和富索引 3.2 聚集sec ...

  8. linux文件系统体系结构 和 虚拟文件系统(VFS)

    图 1. Linux 文件系统组件的体系结构 用户空间包含一些应用程序(例如,文件系统的使用者)和 GNU C 库(glibc),它们为文件系统调用(打开.读取.写和关闭)提供用户接口.系统调用接口的 ...

  9. C++实例讲解Binder通信

    binder是android里面的通信机制,这就不说它如何如何好了,Goog已经说过了,这里不多说.binder是一个面向对象的编程方法,大量使用虚函数类.最近研究binder看到一网友写的,就借鉴一 ...

  10. 重叠div鼠标经过事件

    两个div重叠了,但是下面的div有鼠标移入移出事件,发现当鼠标移入或者移出时事件会执行两次,尝试了在上层div阻止事件,判断div所在位置……,后来发现只要一个css属性即可解决该问题,在上层div ...