这是CVPR 2019的一篇oral。

预备知识点:Geometric median 几何中位数

\begin{equation}
\underset{y \in \mathbb{R}^{n}}{\arg \min } \sum_{i=1}^{m}\left\|x_{i}-y\right\|
\end{equation}

可以理解为距离给定点集欧式距离之和最近的点。这篇博客中有关于几何中位数的介绍:https://www.cnblogs.com/ybiln/p/4175695.html。

文中指出之前的剪枝算法应用的前提条件有两个:

1、权重间隔要大

2、最小值应该更靠近0

(PS: 这个地方文中还画出了图表分析数据的分布情况,但是数据的来源是没有经过稀疏化处理的权重数据,我觉得没有那么具有代表性)

文中最关键的点是利用了中位数这个概念,应该剪去的是中位数,作者知道中位数的数学表达形式,这是一个很关键的预备知识。

后面作者在求取中位数卷积核的一系列近似,得到了数学上能够讲得通的结果。有点诡辩的意思,有的地方不是很严谨。

论文笔记(Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration)的更多相关文章

  1. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  2. 深度学习论文翻译解析(十七):MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    论文标题:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文作者:Andrew ...

  3. 阅读笔记 The Impact of Imbalanced Training Data for Convolutional Neural Networks [DegreeProject2015] 数据分析型

    The Impact of Imbalanced Training Data for Convolutional Neural Networks Paulina Hensman and David M ...

  4. 论文笔记之《Event Extraction via Dynamic Multi-Pooling Convolutional Neural Network》

    1. 文章内容概述 本人精读了事件抽取领域的经典论文<Event Extraction via Dynamic Multi-Pooling Convolutional Neural Networ ...

  5. 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

    UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS  ICLR 2 ...

  6. 论文阅读笔记二-ImageNet Classification with Deep Convolutional Neural Networks

    分类的数据大小:1.2million 张,包括1000个类别. 网络结构:60million个参数,650,000个神经元.网络由5层卷积层,其中由最大值池化层和三个1000输出的(与图片的类别数相同 ...

  7. 论文解读《ImageNet Classification with Deep Convolutional Neural Networks》

    这篇论文提出了AlexNet,奠定了深度学习在CV领域中的地位. 1. ReLu激活函数 2. Dropout 3. 数据增强 网络的架构如图所示 包含八个学习层:五个卷积神经网络和三个全连接网络,并 ...

  8. ImageNet Classification with Deep Convolutional Neural Networks 论文解读

    这个论文应该算是把深度学习应用到图片识别(ILSVRC,ImageNet large-scale Visual Recognition Challenge)上的具有重大意义的一篇文章.因为在之前,人们 ...

  9. 论文翻译:LP-3DCNN: Unveiling Local Phase in 3D Convolutional Neural Networks

    引言 传统的3D卷积神经网络(CNN)计算成本高,内存密集,容易过度拟合,最重要的是,需要改进其特征学习能力.为了解决这些问题,我们提出了整流局部相位体积(ReLPV)模块,它是标准3D卷积层的有效替 ...

随机推荐

  1. Spring Boot:简介

    一.概述 Spring Boot 是Java一个开源框架,主要用途是用来创建微服务:可以用来创建独立的.生产的基于Spring的应用程序. Spring Boot 采用默认配置观点,多数Spring ...

  2. Zabbix配置网络流量监控报警

    一.SNMP简单概述 1.什么是Snmp SNMP是英文"Simple Network Management Protocol"的缩写,中文意思是"简单网络管理协议&qu ...

  3. GO : 斐波纳契数列

    package main import "fmt" // fibonacci is a function that returns // a function that retur ...

  4. class多态

    多态代码实现: class Animal(object): def __init__(self, name): # Constructor of the class self.name = name ...

  5. Python 嘉宾列表问题

    某书上的练习题,当作复习8 #3-5 修改嘉宾名单 def alter(someone, other): if someone in din_list: din_list.remove(someone ...

  6. 用vue脚手架创建bootstrap-vue项目

    用vue脚手架创建bootstrap-vue项目 框架的地址:https://bootstrap-vue.js.org/docs/ 第一步 vue init webpack demo第二步 cd de ...

  7. 火狐开发----如何快速的安装火狐XPI文件

    第一步:火狐的自动安装扩展程序,https://addons.mozilla.org/zh-CN/firefox/addon/autoinstaller/ 第二步:安装wget工具,这个Linux应该 ...

  8. vue - 列表显示(列互相影响,全选控制,更新数据)

    要实现的效果为:全选,且列A列B互相影响,列B勾选则列A一定勾选,列A取消勾选,则相应列B取消勾选 数组 vue中列表渲染有些不是相应式的 var list=[ { a:'aaaa', b:'ddd' ...

  9. bash 和sed 和gawk

    bash内建命令 命令描述 : 扩展参数列表,执行重定向操作 . 读取并执行指定文件中的命令(在当前shell环境中) alias 为指定命令定义一个别名 bg 将作业以后台模式运行 bind 将键盘 ...

  10. 基于MFC开发的指纹识别系统.

    MFC-FingerPrint 基于MFC开发的指纹识别系统. 效果图如下: 在第12步特征入库中,会对当前指纹的mdl数据与databases中所有的mdl进行对比,然后返回识别结果. 一.载入图像 ...