scipy.stats.multivariate_normal的使用
参考:https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.multivariate_normal.html
一个多元正态随机变量。
mean关键字指定平均值,cov关键字指定协方差矩阵。
新版本0.14.0。
补充:高斯分布
Gaussian Distribution(Normal Distribution)其图形特点为中间高,两头低,是钟形曲线(bell-shaped curve)。在高斯分布中,以数学期望μ(即mean)表示钟型的中心位置(也即曲线的位置),而标准差(standard deviation)σ表征曲线的离散程度。

协方差矩阵,参考百度百科:
协方差矩阵的每个元素是各个向量元素之间的协方差

协方差矩阵可用来表示多维随机变量的概率密度,从而可通过协方差矩阵达到对多维随机变量的研究

1)参数:
- x : 数组,分位数,最后一个x轴标记组件。
- mean:数组,可选的。分布的均值(默认为0)
- cov :数组,可选的。分布的协方差矩阵(默认为1)
可以该multivariate_normal对象可以被调用(作为函数)来固定均值和协方差参数,返回一个“frozen”的多元正态随机变量rv:
rv = multivariate_normal(mean=None, scale=1)
冻结对象采用相同的方法,但保持给定的均值和协方差不变。
2)注意:
将参数均值mean设为None等价于将均值mean设为零向量。参数cov可以是一个标量,在这种情况下,协方差矩阵是该值的单位乘、协方差矩阵的对角项向量,或者二维数组。
协方差矩阵cov必须是一个(对称的)正半定矩阵。将cov的行列式和逆分别计算为伪行列式和伪逆,使cov不需要满秩。
multivariate_normal的概率密度函数是:

μ是平均值mean,默认为0;∑即cov是协方差矩阵,默认为1;k是x获取值的空间的维度
3)举例:
from scipy.stats import multivariate_normal
x = np.linspace(, , , endpoint=False)
y = multivariate_normal.pdf(x, mean=2.5, cov=0.5);
x,y
返回,y得到的值x的值在mean=2.5取值点附近的可能性:
(array([. , 0.5, . , 1.5, . , 2.5, . , 3.5, . , 4.5]),
array([0.00108914, 0.01033349, 0.05946514, 0.20755375, 0.43939129,
0.56418958, 0.43939129, 0.20755375, 0.05946514, 0.01033349]))
画图:
plt.plot(x, y)

输入分位数x可以是任何形状的数组,只要最后一个轴标记组件。这使得我们可以在二维中显示非各向同性随机变量的冻结pdf,如下:
x, y = np.mgrid[-::., -::.]
pos = np.empty(x.shape + (,)) #从x.shape=(,)变为(,,)
pos[:, :, ] = x
pos[:, :, ] = y
#mean=[0.5, -0.2],cov=[[2.0, 0.3], [0.3, 0.5]],声明一个带着指定mean和cov的rv对象
rv = multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]])
#将f(X,Y)=rv.pdf(pos)的值对应到color map的暖色组中寻找(X,Y)对应的点对应的颜色
plt.contourf(x, y, rv.pdf(pos))
返回:

可见使用概率密度函数pdf对数据pos,即(x,y)值进行处理后得到满足设置的mean和cov的值,使其分布满足高斯分布。rv.pdf(pos).shape为(200,200)
4)可使用方法:
- pdf(x, mean=None, cov=1) :概率密度函数
- logpdf(x, mean=None, cov=1) :概率密度函数日志
- rvs(mean=None, cov=1) :从多元正态分布中随机抽取样本
- entropy() :计算多元法线的微分熵
scipy.stats.multivariate_normal的使用的更多相关文章
- Scipy教程 - 统计函数库scipy.stats
http://blog.csdn.net/pipisorry/article/details/49515215 统计函数Statistical functions(scipy.stats) Pytho ...
- scipy.stats
scipy.stats Scipy的stats模块包含了多种概率分布的随机变量,随机变量分为连续的和离散的两种.所有的连续随机变量都是rv_continuous的派生类的对象,而所有的离散随机变量都是 ...
- [原创博文] 用Python做统计分析 (Scipy.stats的文档)
[转自] 用Python做统计分析 (Scipy.stats的文档) 对scipy.stats的详细介绍: 这个文档说了以下内容,对python如何做统计分析感兴趣的人可以看看,毕竟Python的库也 ...
- scipy.stats与统计学:4个概率分布:N,chi2,F,t
scipy.stats与统计学:4个概率分布:N,chi2,F,t 四个常用分布的概率密度函数.分布函数.期望.分位数.以及期望方差标准差中位数原点矩: 1,正态分布: from scipy.st ...
- 标准正态分布表(scipy.stats)
0. 标准正态分布表与常用值 Z-score 是非标准正态分布标准化后的 x即 z=x−μσ" role="presentation">z=x−μσz=x−μσ 表 ...
- python scipy stats学习笔记
from scipy.stats import chi2 # 卡方分布from scipy.stats import norm # 正态分布from scipy.stats import t # t分 ...
- 关于使用scipy.stats.lognorm来模拟对数正态分布的误区
lognorm方法的参数容易把人搞蒙.例如lognorm.rvs(s, loc=0, scale=1, size=1)中的参数s,loc,scale, 要记住:loc和scale并不是我们通常理解的对 ...
- multivariate_normal 多元正态分布
多元正态分布 正态分布大家都非常熟悉了,多元正态分布就是多维数据的正态分布,其概率密度函数为 上式为 x 服从 k 元正态分布,x 为 k 维向量:|Σ| 代表协方差矩阵的行列式 二维正态分布概率密度 ...
- Abnormal Detection(异常检测)和 Supervised Learning(有监督训练)在异常检测上的应用初探
1. 异常检测 VS 监督学习 0x1:异常检测算法和监督学习算法的对比 总结来讲: . 在异常检测中,异常点是少之又少,大部分是正常样本,异常只是相对小概率事件 . 异常点的特征表现非常不集中,即异 ...
随机推荐
- C语言实现循环队列的初始化&进队&出队&读取队头元素&判空-2
/*顺序表实现队列的一系列操作(设置flag标志不损失数组空间)*/ #include<stdio.h> #include<stdlib.h> #define Queue_Si ...
- 服务器SSH连接时间设置
用SSH客户端连接linux服务器时,经常会出现与服务器会话连接中断现象,造成这个问题的原因便是SSH服务有自己独特的会话连接机制. 解决方案: 1.设置服务器向SSH客户端连接会话发送频率和时间 v ...
- [转]nodejs使用request发送http请求
本文转自:https://blog.csdn.net/dreamer2020/article/details/52074516/ 在nodejs的开发中,有时需要后台去调用其他服务器的接口,这个时候, ...
- 关于git的简单操作
首先这篇随笔我是不太想写的,因为网上有很多教程,我也是看廖雪峰大神的git教程自学的.还是一个小学生,就当一个学习笔记了,如果你想看大神的原版,请点击这里.我们原来都是用svn的,但是越来越觉得svn ...
- 深入理解 JavaScript 执行上下文和执行栈
前言 如果你是一名 JavaScript 开发者,或者想要成为一名 JavaScript 开发者,那么你必须知道 JavaScript 程序内部的执行机制.执行上下文和执行栈是 JavaScript ...
- 熟悉常用的HBase操作,编写MapReduce作业
1. 以下关系型数据库中的表和数据,要求将其转换为适合于HBase存储的表并插入数据: 学生表(Student) 学号(S_No) 姓名(S_Name) 性别(S_Sex) 年龄(S_Age) 201 ...
- iOS----------使用cocoapods遇到的问题
-bash: /usr/local/bin/pod: /System/Library/Frameworks/Ruby.framework/Versions/2.0/usr/bin/ruby: bad ...
- js 数组去重小技巧
js 数组去重小技巧 Intro 今天遇到一个问题,需要对数据进行去重,想看一下有没有什么比较方便的方法,果然有些收获. Question 问题描述: 我有一个这样的数据: [ { "Pro ...
- 使用cmd查看电脑连接过的wifi密码(二)
上次写了一个查看wifi的bat文件(https://www.cnblogs.com/feiquan/p/9823402.html),发现有个问题就没法保存到记事本,而且还要处理不同的系统语言,这次重 ...
- selenium-弹窗操作(八)
本次以笔者公告栏的 打赏 弹窗为例 对弹窗中的一些操作进行封装后,在测试中使用 作用:减少对弹窗反复操作时进行定位的麻烦,以后使用中都直接调用即可达到目的 # coding=utf-8 from se ...