Loj #2321. 「清华集训 2017」无限之环

曾经有一款流行的游戏,叫做 *Infinity Loop***,先来简单的介绍一下这个游戏:

游戏在一个 \(n \times m\) 的网格状棋盘上进行,其中有些小方格中会有水管,水管可能在方格某些方向的边界的中点有接口,所有水管的粗细都相同,所以如果两个相邻方格的公共边界的中点都有接头,那么可以看作这两个接头互相连接。水管有以下 \(15\) 种形状:


游戏开始时,棋盘中水管可能存在漏水的地方。

形式化地:如果存在某个接头,没有和其它接头相连接,那么它就是一个漏水的地方。

玩家可以进行一种操作:选定一个含有*非直线型*水管的方格,将其中的水管绕方格中心顺时针或逆时针旋转 \(90\) 度。

直线型水管是指左图里中间一行的两种水管。

现给出一个初始局面,请问最少进行多少次操作可以使棋盘上不存在漏水的地方。

输入格式

第一行两个正整数 \(n,m\),代表网格的大小。

接下来 \(n\) 行每行 \(m\) 个数,每个数是 \([0,15]\) 中的一个,你可以将其看作一个 \(4\) 位的二进制数,从低到高每一位分别代表初始局面中这个格子上、右、

下、左方向上是否有 水管接头。

特别地,如果这个数是 \(0\),则意味着这个位置没有水管。

比如 \(3(0011_{(2)})\) 代表上和右有接头,也就是一个 L 型,而 \(12(1100_{(2)})\) 代表下和左有接头,也就是将 L 型旋转 \(180\) 度。

输出格式

输出共一行,表示最少操作次数。如果无法达成目标,输出 \(-1\).

数据范围与提示

\(n \times m \le 2000\)

orz

好神仙啊!

大致思路就是用一个水管的旋转代替所有水管的旋转。

代码:

#include<bits/stdc++.h>
#define ll long long
#define N 10005 using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} int n,m;
struct road {
int to,next;
int flow,cost;
}s[N*200];
int h[N],cnt=1;
void add(int i,int j,int f,int c) {
s[++cnt]=(road) {j,h[i],f,c};h[i]=cnt;
s[++cnt]=(road) {i,h[j],0,-c};h[j]=cnt;
} int S,T;
int dis[N];
queue<int>q;
int e[N],fr[N];
bool in[N];
int ans,maxflow; bool spfa() {
memset(dis,0x3f,sizeof(dis));
dis[S]=0;
q.push(S);
while(!q.empty()) {
int v=q.front();
q.pop();
in[v]=0;
for(int i=h[v];i;i=s[i].next) {
int to=s[i].to;
if(s[i].flow&&dis[to]>dis[v]+s[i].cost) {
dis[to]=dis[v]+s[i].cost;
fr[to]=v;
e[to]=i;
if(!in[to]) in[to]=1,q.push(to);
}
}
}
if(dis[T]>1e9) return 0;
for(int i=T;i!=S;i=fr[i]) {
s[e[i]].flow--;
s[e[i]^1].flow++;
}
maxflow++;
ans+=dis[T];
return 1;
} vector<int>pipe;
int tot;
int ID[2005][2005][5];
int dx[]={-1,0,1,0},dy[]={0,1,0,-1};
int mp[2005][2005];
int main() {
n=Get(),m=Get();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
mp[i][j]=Get();
T=n*m+1;
tot=T;
int lpipe=0,rpipe=0;
for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) {
int id=(i-1)*m+j;
int a=mp[i][j];
pipe.clear();
for(int k=0;k<4;k++) if(a>>k&1) pipe.push_back(k);
for(int k=0;k<4;k++) ID[i][j][k]=++tot;
if(i+j&1) {
lpipe+=pipe.size();
add(S,id,pipe.size(),0);
for(int k=0;k<pipe.size();k++) add(id,ID[i][j][pipe[k]],1,0); if(a==10||a==5||a==15) continue ; if(pipe.size()==1) {
int now=pipe[0];
add(ID[i][j][now],ID[i][j][(now+1)%4],1,1);
add(ID[i][j][now],ID[i][j][(now+2)%4],1,2);
add(ID[i][j][now],ID[i][j][(now+3)%4],1,1);
} else if(pipe.size()==2) {
for(int k=0;k<pipe.size();k++) {
int now=pipe[k];
add(ID[i][j][now],ID[i][j][(now+2)%4],1,1);
}
} else if(pipe.size()==3) {
int now;
for(int k=0;k<4;k++) if(!(a>>k&1)) now=k;
for(int k=0;k<3;k++) {
if((pipe[k]+2)%4==now) add(ID[i][j][pipe[k]],ID[i][j][now],1,2);
else add(ID[i][j][pipe[k]],ID[i][j][now],1,1);
}
}
} else {
rpipe+=pipe.size();
add(id,T,pipe.size(),0);
for(int k=0;k<pipe.size();k++) add(ID[i][j][pipe[k]],id,1,0);
if(a==10||a==5||a==15) continue ; if(pipe.size()==1) {
int now=pipe[0];
add(ID[i][j][(now+1)%4],ID[i][j][now],1,1);
add(ID[i][j][(now+2)%4],ID[i][j][now],1,2);
add(ID[i][j][(now+3)%4],ID[i][j][now],1,1);
} else if(pipe.size()==2) {
for(int k=0;k<pipe.size();k++) {
int now=pipe[k];
add(ID[i][j][(now+2)%4],ID[i][j][now],1,1);
}
} else if(pipe.size()==3) {
int now;
for(int k=0;k<4;k++) if(!(a>>k&1)) now=k;
for(int k=0;k<3;k++) {
if((pipe[k]+2)%4==now) add(ID[i][j][now],ID[i][j][pipe[k]],1,2);
else add(ID[i][j][now],ID[i][j][pipe[k]],1,1);
}
}
}
}
}
for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) {
if(i+j&1) {
for(int d=0;d<4;d++) {
int X=i+dx[d],Y=j+dy[d];
if(1<=X&&X<=n&&1<=Y&&Y<=m) {
add(ID[i][j][d],ID[X][Y][(d+2)%4],1,0);
}
}
}
}
}
if(lpipe!=rpipe) cout<<-1;
else {
while(spfa());
if(maxflow!=lpipe) cout<<-1;
else cout<<ans;
}
return 0;
}

Loj #2321. 「清华集训 2017」无限之环的更多相关文章

  1. UOJ #2321. 「清华集训 2017」无限之环

    首先裂点表示四个方向 一条边上都有插头或者都不有插头,相当于满足流量平衡 最大流 = 插头个数*2时有解 然后求最小费用最大流 黑白染色分别连原点汇点

  2. LOJ2321. 「清华集训 2017」无限之环【费用流】

    LINK 很好的一道网络里题 首先想插头DP的还是出门左转10分代码吧 然后考虑怎么网络流 首先要保证没有漏水 也就是说每个接口一定要有对应的接口 那么发现每个点只有可能和上下左右四个点产生联通关系 ...

  3. [LOJ#2330]「清华集训 2017」榕树之心

    [LOJ#2330]「清华集训 2017」榕树之心 试题描述 深秋.冷风吹散了最后一丝夏日的暑气,也吹落了榕树脚下灌木丛的叶子.相识数年的Evan和Lyra再次回到了小时候见面的茂盛榕树之下.小溪依旧 ...

  4. [LOJ#2329]「清华集训 2017」我的生命已如风中残烛

    [LOJ#2329]「清华集训 2017」我的生命已如风中残烛 试题描述 九条可怜是一个贪玩的女孩子. 这天她在一堵墙钉了 \(n\) 个钉子,第 \(i\) 个钉子的坐标是 \((x_i,y_i)\ ...

  5. Loj #2331. 「清华集训 2017」某位歌姬的故事

    Loj #2331. 「清华集训 2017」某位歌姬的故事 IA 是一名会唱歌的女孩子. IOI2018 就要来了,IA 决定给参赛选手们写一首歌,以表达美好的祝愿.这首歌一共有 \(n\) 个音符, ...

  6. Loj #2324. 「清华集训 2017」小 Y 和二叉树

    Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上, ...

  7. Loj 2320.「清华集训 2017」生成树计数

    Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...

  8. [LOJ#2328]「清华集训 2017」避难所

    [LOJ#2328]「清华集训 2017」避难所 试题描述 "B君啊,你当年的伙伴都不在北京了,为什么你还在北京呢?" "大概是因为出了一些事故吧,否则这道题就不叫避难所 ...

  9. [LOJ#2327]「清华集训 2017」福若格斯

    [LOJ#2327]「清华集训 2017」福若格斯 试题描述 小d是4xx9小游戏高手. 有一天,小d发现了一个很经典的小游戏:跳青蛙. 游戏在一个 \(5\) 个格子的棋盘上进行.在游戏的一开始,最 ...

随机推荐

  1. shell函数-3

    1.shell函数 1.1.shell函数定义 对于重复出现的代码,在shell中可以定义函数,然后在指定的地方调用即可.便于代码复用,提高开发效率. 定义函数的语法如下: function 函数名( ...

  2. 线程安全(上)--彻底搞懂volatile关键字

    对于volatile这个关键字,相信很多朋友都听说过,甚至使用过,这个关键字虽然字面上理解起来比较简单,但是要用好起来却不是一件容易的事.这篇文章将从多个方面来讲解volatile,让你对它更加理解. ...

  3. man帮助文档打印

    这里不讨论大家都知道的man重定向的一般常用方法(col处理方法)$ man find | col -b > man_fine.txt [跟着我的思路走]假如您像我一样,直接使用如下命令导出fi ...

  4. 设计模式总结篇系列:享元模式(Flyweight)

    我们都知道,Java中的String类具有如下特性:String是一个不可变类,当直通过用字符串方式使用String对象时,Jvm实际上在内存中只存有一份,且存在字符串常量池中.当对字符串直接进行修改 ...

  5. Dubbo下一站:Apache顶级项目

    导读: 近日,在Apache Dubbo开发者沙龙杭州站的活动中,阿里巴巴中间件技术专家曹胜利(展图)向开发者们分享了Dubbo2.7版本的规划. 本文将为你探秘 Dubbo 2.7背后的思考和实现方 ...

  6. 痞子衡嵌入式:第一本Git命令教程(1)- 准备(init/config/.gitignore)

    今天是Git系列课程第一课,痞子衡给大家要讲的是创建仓库的准备工作. 1.建仓库git init 第一步是创建一个空仓库,这是一切操作的前提. // 打开git bash命令行,切换到指定目录下 ja ...

  7. JavaScript的事件及异常捕获

    事件处理 [onClick]单击事件.[onMouseOver]鼠标经过事件.[onMouseOut]鼠标移出事件.[onChange]文本内容改变事件.[onSelect]文本被框选事件.[onFo ...

  8. MyBatis动态代理执行原理

    前言 大家使用MyBatis都知道,不管是单独使用还是和Spring集成,我们都是使用接口定义的方式声明数据库的增删改查方法.那么我们只声明一个接口,MyBatis是如何帮我们来实现SQL呢,对吗,我 ...

  9. 【.NET Core项目实战-统一认证平台】第十六章 网关篇-Ocelot集成RPC服务

    [.NET Core项目实战-统一认证平台]开篇及目录索引 一.什么是RPC RPC是"远程调用(Remote Procedure Call)"的一个名称的缩写,并不是任何规范化的 ...

  10. MySQL数据库性能优化(享学课堂听课笔记)

    1.场景: 2张表A表 200W条数据,关联表B表3W条数据,AB有主外键关系. 案例1. 35S 使用关联子查询,查询时间35S 案例2. 19S 使用连表查询 (Left  join ,Inner ...