题目

On the well-known testing system MathForces, a draw of nnn rating units is arranged. The rating will be distributed according to the following algorithm: if kkk participants take part in this event, then the nnn rating is evenly distributed between them and rounded to the nearest lower integer, At the end of the drawing, an unused rating may remain — it is not given to any of the participants.

For example, if n=5n=5n=5 and k=3k=3k=3, then each participant will recieve an 111 rating unit, and also 222 rating units will remain unused. If n=5n=5n=5, and k=6k=6k=6, then none of the participants will increase their rating.

Vasya participates in this rating draw but does not have information on the total number of participants in this event. Therefore, he wants to know what different values of the rating increment are possible to get as a result of this draw and asks you for help.

For example, if n=5n=5n=5, then the answer is equal to the sequence 0,1,2,50,1,2,50,1,2,5. Each of the sequence values (and only them) can be obtained as ⌊n/k⌋ for some positive integer kkk (where ⌊x⌋⌊x⌋⌊x⌋ is the value of xxx rounded down): 0=⌊5/7⌋,1=⌊5/5⌋,2=⌊5/2⌋,5=⌊5/1⌋0=⌊5/7⌋, 1=⌊5/5⌋, 2=⌊5/2⌋, 5=⌊5/1⌋0=⌊5/7⌋,1=⌊5/5⌋,2=⌊5/2⌋,5=⌊5/1⌋.

Write a program that, for a given nnn, finds a sequence of all possible rating increments.

输入

The first line contains integer number t(1≤t≤10)t (1≤t≤10)t(1≤t≤10) — the number of test cases in the input. Then ttt test cases follow.

Each line contains an integer n(1≤n≤109)n(1≤n≤10^9)n(1≤n≤109) — the total number of the rating units being drawn.

输出

Output the answers for each of ttt test cases. Each answer should be contained in two lines.

In the first line print a single integer mmm — the number of different rating increment values that Vasya can get.

In the following line print mmm integers in ascending order — the values of possible rating increments.

题目大意

给定ttt组数据,每组包含一个整数n(1≤n≤109)n(1≤n≤10^9)n(1≤n≤109),求出所有n被整除能得出的商。

想法

朴素想法:枚举1−n1-n1−n,每个除一遍,加到setsetset中去重,然后直接遍历输出即可。

复杂度O(tnlog⁡n)O(tn\log n)O(tnlogn),死路一条。

考虑到x×x=nx\times x=nx×x=n,我们可以最多枚举到n\sqrt nn​,在枚举时同时加入xxx和n/xn/xn/x,那么式子看起来是这样:

n÷(n÷x)=xn \div (n \div x) = xn÷(n÷x)=x

n÷x=n÷xn \div x = n \div xn÷x=n÷x

即可保证所有整除商都被加入setsetset中。

此时复杂度O(tnlog⁡n)O(t\sqrt n\log n)O(tn​logn),能过。

代码如下:

#include <cstdio>
#include <set>
#include <cmath>
using namespace std;
int t, n;
set<int> out;
int main()
{
scanf("%d", &t);
while (t--)
{
out.clear();
scanf("%d", &n);
out.insert(0);
int lim = sqrt(n);
for (int i = 1; i <= lim; ++i)
{
out.insert(i);
out.insert(n / i);
}
printf("%d\n",out.size());
for (set<int>::iterator it = out.begin(); it != out.end(); ++it)
printf("%d ", *it);
printf("\n");
}
return 0;
}

但事实上,还有更简单的方法:我们可以去掉这个setsetset!

在枚举x=[1,n]x = [1,\sqrt n]x=[1,n​]时,我们会发现,每个xxx都是可以取到且不重复的,而n÷xn \div xn÷x实际上也是不重复的。证明如下:

设n÷x1=k1,n÷x2=k2,其中x1>x2设n \div x_1 = k_1,n \div x_2 = k_2,其中x_1 > x_2设n÷x1​=k1​,n÷x2​=k2​,其中x1​>x2​

则有:

k1×x1+t1=n,t1∈[0,x1)k_1 \times x_1 + t_1 = n,t1 \in [0,x_1)k1​×x1​+t1​=n,t1∈[0,x1​)

k2×x2+t2=n,t2∈[0,x2)k_2 \times x_2 + t_2 = n,t2 \in [0,x_2)k2​×x2​+t2​=n,t2∈[0,x2​)

假如k1=k2=kk_1 = k_2 = kk1​=k2​=k,那么:

k×x1+t1=k×x2+t2k \times x_1 + t_1 = k \times x_2 + t_2k×x1​+t1​=k×x2​+t2​

k×(x1−x2)=t2−t1k \times (x_1 - x_2) = t_2 - t_1k×(x1​−x2​)=t2​−t1​

k=(t2−t1)(x1−x2)k = \frac{(t_2 - t_1)}{(x_1 - x_2)}k=(x1​−x2​)(t2​−t1​)​

然而:

t2−t1∈(−x1,x2−x1)t_2 - t_1 \in (-x_1,x_2-x_1)t2​−t1​∈(−x1​,x2​−x1​)

那么k∈(−x1x1−x2,x2−x1x1−x2)k \in (\frac{-x_1}{x_1 - x_2},\frac{x_2-x_1}{x_1-x_2})k∈(x1​−x2​−x1​​,x1​−x2​x2​−x1​​)

显然此时k<0k<0k<0,产生了矛盾。

因此,对于x∈[1,n]x \in [1,\sqrt n]x∈[1,n​],我们得到的所有的xxx和n÷xn \div xn÷x即为答案。

顺序枚举xxx,将n÷xn \div xn÷x存入另一个数组中,显然该数组中的数单调递减。

还需要特判最后x=nx = \sqrt nx=n​时,x=n÷xx = n \div xx=n÷x的情况。

输出答案直接输出[0,n][0,\sqrt n][0,n​],再逆序输出保存数组中的结果即可。

复杂度O(tn)O(t\sqrt n)O(tn​),已经相当优秀了。

还有一种整除分块的方法,本蒟蒻还不会……

Code

#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
int t, n, lim, cnt;
int save[50000];
int main()
{
scanf("%d", &t);
while (t--)
{
scanf("%d", &n);
lim = sqrt(n);
cnt = 0;
for (register int i = 1; i <= lim; ++i)
save[++cnt] = n / i;
if (cnt && lim == save[cnt]) //特判,注意有可能输入为0,这样cnt会被减为负数……
--cnt;
printf("%d\n", cnt + lim + 1);
for (int i = 0; i <= lim; ++i)
printf("%d ", i);
for (int i = cnt; i; --i)
printf("%d ", save[i]);
putchar('\n');
}
return 0;
}

[Codeforces]1263C Everyone is a Winner!的更多相关文章

  1. Codeforces Beta Round #2 A. Winner 水题

    A. Winner 题目连接: http://www.codeforces.com/contest/2/problem/A Description The winner of the card gam ...

  2. Codeforces Beta Round #2 A. Winner

    A. Winner time limit per test 1 second memory limit per test 64 megabytes input standard input outpu ...

  3. [Codeforces] #603 (Div. 2) A-E题解

    [Codeforces]1263A Sweet Problem [Codeforces]1263B PIN Code [Codeforces]1263C Everyone is a Winner! [ ...

  4. 『题解』Codeforces2A Winner

    Portal Portal1: Codeforces Portal2: Luogu Description The winner of the card game popular in Berland ...

  5. codeforces 2A Winner (好好学习英语)

    Winner 题目链接:http://codeforces.com/contest/2/problem/A ——每天在线,欢迎留言谈论. 题目大意: 最后结果的最高分 maxscore.在最后分数都为 ...

  6. CodeForces 2A - Winner(模拟)

    题目链接:http://codeforces.com/problemset/problem/2/A A. Winner time limit per test 1 second memory limi ...

  7. CodeForces 2A Winner

    Winner Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Statu ...

  8. Codeforces 2A :winner

    A. Winner time limit per test 1 second memory limit per test 64 megabytes input standard input outpu ...

  9. codeforces Winner

    /* * Winner.cpp * * Created on: 2013-10-13 * Author: wangzhu */ /** * 先找出所有选手的分数和中最大的分数和,之后在所有选手的分数和 ...

随机推荐

  1. Pycharm创建一个Django项目

    1.创建项目 如果本地没有安装与所选python版本对应Django版本,pycharm会自动下载相应的版本: 创建后运行项目,默认页面为http://127.0.0.1:8000/,打开后: 出现上 ...

  2. Python中.npz文件的读取

    有时候从网上下载的数据集扩展名(后缀名)是npz,我们需要对数据进行加载(读取):例如:识别猫狗图片的二分类,下的数据集分别为cat.npz和dog.npz import numpy as npcat ...

  3. java后端开发echarts

    参考: https://blog.csdn.net/mxdmojingqing/article/details/77340245 https://github.com/abel533/ECharts

  4. 3_05_MSSQL课程_Ado.Net_SQLDataAdapter

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Configurat ...

  5. Spark教程——(10)Spark SQL读取Phoenix数据本地执行计算

    添加配置文件 phoenixConnectMode.scala : package statistics.benefits import org.apache.hadoop.conf.Configur ...

  6. 原生JS 和 JQ 获取滚动条的高度,以及距离顶部的高度

    JQ:相对比较简便 获取浏览器显示区域(可视区域)的高度 : $(window).height(); 获取浏览器显示区域(可视区域)的宽度 : $(window).width(); 获取页面的文档高度 ...

  7. 华为平板暴力禁用wifi

    删除以下配置文件及动态链接库: /system/etc/wifi/* /system/etc/permission/*wifi* /system/lib/*wifi*

  8. UITextField的使用、介绍、讲解、全解、简介、说明

    [2018年中秋节良心写作]文章将尽可能的全面介绍UITextField的所有相关知识,逻辑连贯,需要认真理解,一气呵成. 关键词: 屏幕键盘(onscreen keyboard).键盘自定义.键盘类 ...

  9. cmd进入任何一个文件夹的步骤?

    cmd进入任何一个文件夹的步骤具体如下: 步骤如下: 1.点击左下角[开始],在搜索程序和文件中输入:cmd,进入cmd命令窗口: 2.进入到D盘,在cmd命令窗口输入:D: 3.进入D盘后,输入:c ...

  10. PLSQL设置显示的字符集及设置

    一.关于PLSQL无法正确显示中文 刚才下载安装了PLSQL Developer 9.0.0.1601 汉化绿色版,执行SQL查询语句,发现显示的数据中只要有中文都会以?表示.经过网上查询得知这是客户 ...