数据结构和算法(Golang实现)(8.2)基础知识-分治法和递归
分治法和递归
在计算机科学中,分治法是一种很重要的算法。
字面上的解释是分而治之
,就是把一个复杂的问题分成两个或更多的相同或相似的子问题。
直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
分治法一般使用递归来求问题的解。
一、递归
递归就是不断地调用函数本身。
比如我们求阶乘1 * 2 * 3 * 4 * 5 *...* N
:
package main
import "fmt"
func Rescuvie(n int) int {
if n == 0 {
return 1
}
return n * Rescuvie(n-1)
}
func main() {
fmt.Println(Rescuvie(5))
}
会反复进入一个函数,它的过程如下:
Rescuvie(5)
{5 * Rescuvie(4)}
{5 * {4 * Rescuvie(3)}}
{5 * {4 * {3 * Rescuvie(2)}}}
{5 * {4 * {3 * {2 * Rescuvie(1)}}}}
{5 * {4 * {3 * {2 * 1}}}}
{5 * {4 * {3 * 2}}}
{5 * {4 * 6}}
{5 * 24}
120
函数不断地调用本身,并且还乘以一个变量:n * Rescuvie(n-1)
,这是一个递归的过程。
很容易看出, 因为递归式使用了运算符,每次重复的调用都使得运算的链条不断加长,系统不得不使用栈进行数据保存和恢复。
如果每次递归都要对越来越长的链进行运算,那速度极慢,并且可能栈溢出,导致程序奔溃。
所以有另外一种写法,叫尾递归:
package main
import "fmt"
func RescuvieTail(n int, a int) int {
if n == 1 {
return a
}
return RescuvieTail(n-1, a*n)
}
func main() {
fmt.Println(RescuvieTail(5, 1))
}
他的递归过程如下:
RescuvieTail(5, 1)
RescuvieTail(4, 1*5)=RescuvieTail(4, 5)
RescuvieTail(3, 5*4)=RescuvieTail(3, 20)
RescuvieTail(2, 20*3)=RescuvieTail(2, 60)
RescuvieTail(1, 60*2)=RescuvieTail(1, 120)
120
尾部递归是指递归函数在调用自身后直接传回其值,而不对其再加运算,效率将会极大的提高。
如果一个函数中所有递归形式的调用都出现在函数的末尾,我们称这个递归函数是尾递归的。当递归调用是整个函数体中最后执行的语句且它的返回值不属于表达式的一部分时,这个递归调用就是尾递归。尾递归函数的特点是在回归过程中不用做任何操作,这个特性很重要,因为大多数现代的编译器会利用这种特点自动生成优化的代码。-- 来自百度百科。
尾递归函数,部分高级语言编译器会进行优化,减少不必要的堆栈生成,使得程序栈维持固定的层数,不会出现栈溢出的情况。
我们将会举多个例子说明。
二、例子:斐波那契数列
斐波那契数列是指,后一个数是前两个数的和的一种数列。如下:
1 1 2 3 5 8 13 21 ... N-1 N 2N-1
尾递归的求解为:
package main
import "fmt"
func F(n int, a1, a2 int) int {
if n == 0 {
return a1
}
return F(n-1, a2, a1+a2)
}
func main() {
fmt.Println(F(1, 1, 1))
fmt.Println(F(2, 1, 1))
fmt.Println(F(3, 1, 1))
fmt.Println(F(4, 1, 1))
fmt.Println(F(5, 1, 1))
}
输出:
1
2
3
5
8
当n=5
的递归过程如下:
F(5,1,1)
F(4,1,1+1)=F(4,1,2)
F(3,2,1+2)=F(3,2,3)
F(2,3,2+3)=F(2,3,5)
F(1,5,3+5)=F(1,5,8)
F(0,8,5+8)=F(0,8,13)
8
三、例子:二分查找
在一个已经排好序的数列,找出某个数,如:
1 5 9 15 81 89 123 189 333
从上面排好序的数列中找出数字189
。
二分查找的思路是,先拿排好序数列的中位数与目标数字189
对比,如果刚好匹配目标,结束。
如果中位数比目标数字大,因为已经排好序,所以中位数右边的数字绝对都比目标数字大,那么从中位数的左边找。
如果中位数比目标数字小,因为已经排好序,所以中位数左边的数字绝对都比目标数字小,那么从中位数的右边找。
这种分而治之,一分为二的查找叫做二分查找算法。
递归解法:
package main
import "fmt"
// 二分查找递归解法
func BinarySearch(array []int, target int, l, r int) int {
if l > r {
// 出界了,找不到
return -1
}
// 从中间开始找
mid := (l + r) / 2
middleNum := array[mid]
if middleNum == target {
return mid // 找到了
} else if middleNum > target {
// 中间的数比目标还大,从左边找
return BinarySearch(array, target, 1, mid-1)
} else {
// 中间的数比目标还小,从右边找
return BinarySearch(array, target, mid+1, r)
}
}
func main() {
array := []int{1, 5, 9, 15, 81, 89, 123, 189, 333}
target := 500
result := BinarySearch(array, target, 0, len(array)-1)
fmt.Println(target, result)
target = 189
result = BinarySearch(array, target, 0, len(array)-1)
fmt.Println(target, result)
}
输出:
500 -1
189 7
可以看到,189
这个数字在数列的下标7
处,而500
这个数找不到。
当然,递归解法都可以转化为非递归,如:
package main
import "fmt"
// 二分查找非递归解法
func BinarySearch2(array []int, target int, l, r int) int {
ltemp := l
rtemp := r
for {
if ltemp > rtemp {
// 出界了,找不到
return -1
}
// 从中间开始找
mid := (ltemp + rtemp) / 2
middleNum := array[mid]
if middleNum == target {
return mid // 找到了
} else if middleNum > target {
// 中间的数比目标还大,从左边找
rtemp = mid - 1
} else {
// 中间的数比目标还小,从右边找
ltemp = mid + 1
}
}
}
func main() {
array := []int{1, 5, 9, 15, 81, 89, 123, 189, 333}
target := 500
result := BinarySearch2(array, target, 0, len(array)-1)
fmt.Println(target, result)
target = 189
result = BinarySearch2(array, target, 0, len(array)-1)
fmt.Println(target, result)
}
很多计算机问题都可以用递归来简化求解,理论上,所有的递归方式都可以转化为非递归的方式,只不过使用递归,代码的可读性更高。
系列文章入口
我是陈星星,欢迎阅读我亲自写的 数据结构和算法(Golang实现),文章首发于 阅读更友好的GitBook。
- 数据结构和算法(Golang实现)(1)简单入门Golang-前言
- 数据结构和算法(Golang实现)(2)简单入门Golang-包、变量和函数
- 数据结构和算法(Golang实现)(3)简单入门Golang-流程控制语句
- 数据结构和算法(Golang实现)(4)简单入门Golang-结构体和方法
- 数据结构和算法(Golang实现)(5)简单入门Golang-接口
- 数据结构和算法(Golang实现)(6)简单入门Golang-并发、协程和信道
- 数据结构和算法(Golang实现)(7)简单入门Golang-标准库
- 数据结构和算法(Golang实现)(8.1)基础知识-前言
- 数据结构和算法(Golang实现)(8.2)基础知识-分治法和递归
- 数据结构和算法(Golang实现)(9)基础知识-算法复杂度及渐进符号
- 数据结构和算法(Golang实现)(10)基础知识-算法复杂度主方法
- 数据结构和算法(Golang实现)(11)常见数据结构-前言
- 数据结构和算法(Golang实现)(12)常见数据结构-链表
- 数据结构和算法(Golang实现)(13)常见数据结构-可变长数组
- 数据结构和算法(Golang实现)(14)常见数据结构-栈和队列
- 数据结构和算法(Golang实现)(15)常见数据结构-列表
- 数据结构和算法(Golang实现)(16)常见数据结构-字典
- 数据结构和算法(Golang实现)(17)常见数据结构-树
- 数据结构和算法(Golang实现)(18)排序算法-前言
- 数据结构和算法(Golang实现)(19)排序算法-冒泡排序
- 数据结构和算法(Golang实现)(20)排序算法-选择排序
- 数据结构和算法(Golang实现)(21)排序算法-插入排序
- 数据结构和算法(Golang实现)(22)排序算法-希尔排序
- 数据结构和算法(Golang实现)(23)排序算法-归并排序
- 数据结构和算法(Golang实现)(24)排序算法-优先队列及堆排序
- 数据结构和算法(Golang实现)(25)排序算法-快速排序
- 数据结构和算法(Golang实现)(26)查找算法-哈希表
- 数据结构和算法(Golang实现)(27)查找算法-二叉查找树
- 数据结构和算法(Golang实现)(28)查找算法-AVL树
- 数据结构和算法(Golang实现)(29)查找算法-2-3树和左倾红黑树
- 数据结构和算法(Golang实现)(30)查找算法-2-3-4树和普通红黑树
数据结构和算法(Golang实现)(8.2)基础知识-分治法和递归的更多相关文章
- 数据结构和算法(Golang实现)(8.1)基础知识-前言
基础知识 学习数据结构和算法.我们要知道一些基础的知识. 一.什么是算法 算法(英文algorithm)这个词在中文里面博大精深,表示算账的方法,也可以表示运筹帷幄的计谋等.在计算机科技里,它表示什么 ...
- 数据结构和算法(Golang实现)(9)基础知识-算法复杂度及渐进符号
算法复杂度及渐进符号 一.算法复杂度 首先每个程序运行过程中,都要占用一定的计算机资源,比如内存,磁盘等,这些是空间,计算过程中需要判断,循环执行某些逻辑,周而反复,这些是时间. 那么一个算法有多好, ...
- 数据结构和算法(Golang实现)(10)基础知识-算法复杂度主方法
算法复杂度主方法 有时候,我们要评估一个算法的复杂度,但是算法被分散为几个递归的子问题,这样评估起来很难,有一个数学公式可以很快地评估出来. 一.复杂度主方法 主方法,也可以叫主定理.对于那些用分治法 ...
- 数据结构和算法(Golang实现)(25)排序算法-快速排序
快速排序 快速排序是一种分治策略的排序算法,是由英国计算机科学家Tony Hoare发明的, 该算法被发布在1961年的Communications of the ACM 国际计算机学会月刊. 注:A ...
- 数据结构和算法(Golang实现)(1)简单入门Golang-前言
数据结构和算法在计算机科学里,有非常重要的地位.此系列文章尝试使用 Golang 编程语言来实现各种数据结构和算法,并且适当进行算法分析. 我们会先简单学习一下Golang,然后进入计算机程序世界的第 ...
- 数据结构和算法(Golang实现)(2)简单入门Golang-包、变量和函数
包.变量和函数 一.举个例子 现在我们来建立一个完整的程序main.go: // Golang程序入口的包名必须为 main package main // import "golang&q ...
- 数据结构和算法(Golang实现)(3)简单入门Golang-流程控制语句
流程控制语句 计算机编程语言中,流程控制语句很重要,可以让机器知道什么时候做什么事,做几次.主要有条件和循环语句. Golang只有一种循环:for,只有一种判断:if,还有一种特殊的switch条件 ...
- 数据结构和算法(Golang实现)(4)简单入门Golang-结构体和方法
结构体和方法 一.值,指针和引用 我们现在有一段程序: package main import "fmt" func main() { // a,b 是一个值 a := 5 b : ...
- 数据结构和算法(Golang实现)(5)简单入门Golang-接口
接口 在Golang世界中,有一种叫interface的东西,很是神奇. 一.数据类型 interface{} 如果你事前并不知道变量是哪种数据类型,不知道它是整数还是字符串,但是你还是想要使用它. ...
随机推荐
- JMeter报错:Address already in use : connect
Address already in use : connect的解决办法: 修改操作系统注册表1.打开注册表:regedit2.找到HKEY_LOCAL_MACHINE\SYSTEM\Current ...
- C 2015年真题
1.写出程序输出结果 void main() { char p[10]="abc"; char q[]="xyz"; int i,j; i=0; while(* ...
- jenkins-gitlab-harbor-ceph基于Kubernetes的CI/CD运用(二)
一张网图 因为我们使用了Docker in Docker技术,就是把jenkins部署在k8s里.jenkins master会动态创建slave pod,使用slave pod运行代码克隆,项目构建 ...
- [深入学习C#] 匿名函数、委托和Lambda表达式
匿名函数 匿名函数(Anonymous Function)是表示“内联”方法定义的表达式.匿名函数本身及其内部没有值或者类型,但是可以转换为兼容的委托或者表达式树类型(了解详情).匿名函数转换的计算取 ...
- Trie树-0/1字典树-DFS-1624. 最大距离
2020-03-18 20:45:47 问题描述: 两个二进制串的距离是去掉最长公共前缀的长度之和.比如: 1011000和1011110的最长公共前缀是1011, 距离就是 len("00 ...
- 一些js 概念 整理
1.原型链 prototype 这个属性 是一个指针,指向一个对象 这个对象 包含 所有实例共享的属性和方法,即这个原型对象是用来给实例共享属性和方法的. 而每个实例内部 ...
- Arcgis License的安装及破解
1.双击LicenseManager安装目录下的Setup.exe. 2.点击“Next”. 3.选择“I accept the license agreement”,点击“Next”. 4.点击“C ...
- RabbitMQ 交换机类型
1,扇形交换机 fanout 2, 直连交换机 direct 3, 通配符交换机 topic
- MySQL count知多少
统计一个表的数据量是经常遇到的需求,但是不同的表设计及不同的写法,统计性能差别会有较大的差异,下面就简单通过实验进行测试(大家测试的时候注意缓存的情况,否则影响测试结果). 1. 准备工作 为了后续测 ...
- mybatis入门四 解决字段名与实体类属性名不相同的冲突
一.创建测试需要使用的表和数据 CREATE TABLE orders( order_id INT PRIMARY KEY AUTO_INCREMENT, order_no VARCHAR(20), ...