目录:

介绍

记录设备状态

手动分配状态

允许GPU内存增长

在多GPU系统是使用单个GPU

使用多个 GPU

一、介绍

在一个典型的系统中,有多个计算设备。在 TensorFlow 中支持的设备类型包括 CPU 和 GPU。他们用字符串来表达,例如:

  • “/cpu:0”: 机器的 CPU
  • “/device:GPU:0”: 机器的 GPU 如果你只有一个
  • “/device:GPU:1”: 机器的第二个 GPU

如果 TensorFlow 操作同时有 CPU 和 GPU 的实现,操作将会优先分配给 GPU 设备。例如,matmul 同时有 CPU 和 GPU 核心,在一个系统中同时有设备 cpu:0 和 gpu:0,gpu:0 将会被选择来执行 matmul。

二、记录设备状态

为了确定你的操作和张量分配给了哪一个设备,创建一个把 log_device_placement 的配置选项设置为 True 的会话即可。

创建一个计算图

a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name=’a’)

b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name=’b’)

c = tf.matmul(a, b)

创建一个 session,它的 log_device_placement 被设置为 True.

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

运行这个操作

print(sess.run(c))

你将会看到一下输出:

Device mapping:

/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla K40c, pci bus

id: 0000:05:00.0

b: /job:localhost/replica:0/task:0/device:GPU:0

a: /job:localhost/replica:0/task:0/device:GPU:0

MatMul: /job:localhost/replica:0/task:0/device:GPU:0

[[ 22. 28.]

[ 49. 64.]]

三、手动分配设备

如果你希望一个特定的操作运行在一个你选择的设备上,而不是自动选择的设备,你可以使用 tf.device 来创建一个设备环境,这样所有在这个环境的操作会有相同的设备分配选项。

创建一个会话

with tf.device(‘/cpu:0’):

a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name=’a’)

b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name=’b’)

c = tf.matmul(a, b)

创建一个 session,它的 log_device_placement 被设置为 True

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

运行这个操作

print(sess.run(c))

你将会看到 a 和 b 被分配给了 cpu:0。因为没有指定特定的设备来执行 matmul 操作,TensorFlow 将会根据操作和已有的设备来选择(在这个例子中是 gpu:0),并且如果有需要会自动在设备之间复制张量。

Device mapping:

/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla K40c, pci bus

id: 0000:05:00.0

b: /job:localhost/replica:0/task:0/cpu:0

a: /job:localhost/replica:0/task:0/cpu:0

MatMul: /job:localhost/replica:0/task:0/device:GPU:0

[[ 22. 28.]

[ 49. 64.]]

四、允许 GPU 内存增长

默认情况下,TensorFlow 将几乎所有的 GPU的显存(受 CUDA_VISIBLE_DEVICES 影响)映射到进程。 通过减少内存碎片,可以更有效地使用设备上宝贵的GPU内存资源。

在某些情况下,只需要分配可用内存的一个子集给进程,或者仅根据进程需要增加内存使用量。 TensorFlow 在 Session 上提供了两个 Config 选项来控制这个选项。

第一个是 allow_growth 选项,它根据运行时的需要分配 GPU 内存:它开始分配很少的内存,并且随着 Sessions 运行并需要更多的 GPU 内存,我们根据 TensorFlow 进程需要继续扩展了GPU所需的内存区域。请注意,我们不释放内存,因为这会导致内存碎片变得更糟。要打开此选项,请通过以下方式在 ConfigProto 中设置选项:

config = tf.ConfigProto()

config.gpu_options.allow_growth = True

session = tf.Session(config=config, …)

第二种方法是 per_process_gpu_memory_fraction 选项,它决定了每个可见GPU应该分配的总内存量的一部分。例如,可以通过以下方式告诉 TensorFlow 仅分配每个GPU的总内存的40%:

config = tf.ConfigProto()

config.gpu_options.per_process_gpu_memory_fraction = 0.4

session = tf.Session(config=config, …)

如果要真正限制 TensorFlow 进程可用的GPU内存量,这非常有用。

五、在多GPU系统上使用单个GPU

如果您的系统中有多个GPU,则默认情况下将选择具有最低ID的GPU。 如果您想在不同的GPU上运行,则需要明确指定首选项:

创建一个计算图

with tf.device(‘/device:GPU:2’):

a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name=’a’)

b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name=’b’)

c = tf.matmul(a, b)

创建一个 log_device_placement 设置为True 的会话

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

运行这个操作

print(sess.run(c))

你会看到现在 a 和 b 被分配给 cpu:0。 由于未明确指定设备用于 MatMul 操作,因此 TensorFlow 运行时将根据操作和可用设备(本例中为 gpu:0)选择一个设备,并根据需要自动复制设备之间的张量。

如果指定的设备不存在,将得到 InvalidArgumentError:

InvalidArgumentError: Invalid argument: Cannot assign a device to node ‘b’:

Could not satisfy explicit device specification ‘/device:GPU:2’

[[Node: b = Const[dtype=DT_FLOAT, value=Tensor<type: float shape: [3,2]

values: 1 2 3…>, _device=”/device:GPU:2”]()]]

如果希望 TensorFlow 在指定的设备不存在的情况下自动选择现有的受支持设备来运行操作,则可以在创建会话时在配置选项中将 allow_soft_placement 设置为 True。

创建计算图

with tf.device(‘/device:GPU:2’):

a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name=’a’)

b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name=’b’)

c = tf.matmul(a, b)

创建一个 allow_soft_placement 和 log_device_placement 设置为 True 的会话

sess = tf.Session(config=tf.ConfigProto(

allow_soft_placement=True, log_device_placement=True))

运行这个操作

print(sess.run(c))

六、使用多个 GPU

如果您想要在多个 GPU 上运行 TensorFlow ,则可以采用多塔式方式构建模型,其中每个塔都分配有不同的 GPU。 例如:

创建计算图

c = []

for d in [‘/device:GPU:2’, ‘/device:GPU:3’]:

with tf.device(d):

a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3])

b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2])

c.append(tf.matmul(a, b))

with tf.device(‘/cpu:0’):

sum = tf.add_n(c)

创建一个 log_device_placement 设置为 True 的会话

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

运行这个操作

print(sess.run(sum))

你将会看到以下的输出:

Device mapping:

/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla K20m, pci bus

id: 0000:02:00.0

/job:localhost/replica:0/task:0/device:GPU:1 -> device: 1, name: Tesla K20m, pci bus

id: 0000:03:00.0

/job:localhost/replica:0/task:0/device:GPU:2 -> device: 2, name: Tesla K20m, pci bus

id: 0000:83:00.0

/job:localhost/replica:0/task:0/device:GPU:3 -> device: 3, name: Tesla K20m, pci bus

id: 0000:84:00.0

Const_3: /job:localhost/replica:0/task:0/device:GPU:3

Const_2: /job:localhost/replica:0/task:0/device:GPU:3

MatMul_1: /job:localhost/replica:0/task:0/device:GPU:3

Const_1: /job:localhost/replica:0/task:0/device:GPU:2

Const: /job:localhost/replica:0/task:0/device:GPU:2

MatMul: /job:localhost/replica:0/task:0/device:GPU:2

AddN: /job:localhost/replica:0/task:0/cpu:0

[[ 44. 56.]

[ 98. 128.]]

翻译自:

https://www.tensorflow.org/programmers_guide/using_gpu

多GPU使用详解的更多相关文章

  1. [CB]Intel 2018架构日详解:新CPU&新GPU齐公布 牙膏时代有望明年结束

    Intel 2018架构日详解:新CPU&新GPU齐公布 牙膏时代有望明年结束 北京时间12月12日晚,Intel在圣克拉拉举办了架构日活动.在五个小时的演讲中,Intel揭开了2021年CP ...

  2. Win10 TensorFlow(gpu)安装详解

    Win10 TensorFlow(gpu)安装详解 写在前面:TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着 ...

  3. (转)Win10 TensorFlow(gpu)安装详解

    Win10 TensorFlow(gpu)安装详解 写在前面:TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着 ...

  4. GPU虚拟化技术详解

    GPU虚拟化技术详解 GPU英文名称为Graphic Processing Unit,GPU中文全称为计算机图形处理器,1999年由NVIDIA公司提出. 一.GPU概述 GPU这一概念也是相对于计算 ...

  5. 详解Paint的setXfermode(Xfermode xfermode)

    一.setXfermode(Xfermode xfermode) Xfermode国外有大神称之为过渡模式,这种翻译比较贴切但恐怕不易理解,大家也可以直接称之为图像混合模式,因为所谓的“过渡”其实就是 ...

  6. Chrome开发者工具详解(3)-Timeline面板

    Chrome开发者工具详解(3)-Timeline面板 注: 这一篇主要讲解面板Timeline,参考了Google的相关文档,主要用于公司内部技术分享.. Timeline面板 Timeline面板 ...

  7. 2013款Mac Pro“神秘”主机详解

    2013款Mac Pro"神秘"主机详解 自2013年12月下旬新款Mac Pro在美国发布以来,经过一个月的等待终于在国内已到货,笔者亲自测试了这个号称"神秘" ...

  8. GLSL-几何着色器详解跟实例(GS:Geometry Shader)[转]

    [OpenGL4.0]GLSL-几何着色器详解和实例(GS:Geometry Shader) 一.什么是几何着色器(GS:Geometry Shader) Input Assembler(IA)从顶点 ...

  9. 莱特币ltc在linux下的多种挖矿方案详解

    莱特币ltc在linux下的多种挖矿方案详解 4.0.1 Nvidia显卡Linux驱动Nvidia全部驱动:http://www.nvidia.cn/Download/index.aspx?lang ...

随机推荐

  1. hadoop地址配置、内存配置、守护进程设置、环境设置

    1.1  hadoop配置 hadoop配置文件在安装包的etc/hadoop目录下,但是为了方便升级,配置不被覆盖一般放在其他地方,并用环境变量HADOOP_CONF_DIR指定目录. 1.1.1  ...

  2. Vue的fetch的概述和使用

    Fetch基本概念 (前端小白,刚学习vue,写的不好或是不对,请各位大佬多多指正!感激不尽!) Fetch 是一个现代的概念, 等同于 XMLHttpRequest.它提供了许多与XMLHttpRe ...

  3. Angular 从入坑到挖坑 - 表单控件概览

    一.Overview angular 入坑记录的笔记第三篇,介绍 angular 中表单控件的相关概念,了解如何在 angular 中创建一个表单,以及如何针对表单控件进行数据校验. 对应官方文档地址 ...

  4. HTML中的meta标签常用属性及其作用总结

    文章同步到github 以前没怎么太注意过meta标签的作用,只是简单了解一些常用属性,现在结合个人了解的进行记录与总结: 元数据 首先需要了解一下元数据(metadata)元素的概念,用来构建HTM ...

  5. 一些大厂的css reset 代码

    不同的浏览器对标签的默认值不同,为了避免页面出现浏览器差异,所以要初始化样式表属性.使用通配符*并不可取,因为会遍历到每一个标签,大型网页会加载过慢,影响性能. 雅虎工程师提供的CSS初始化示例代码: ...

  6. Python——工厂模式

    目录 前言 一.简单工厂 二.工厂方法 抽象工厂 结论 参考 前言 工厂模式,顾名思义就是我们可以通过一个指定的"工厂"获得需要的"产品". 在设计模式中主要用 ...

  7. Java——JDBC

    今天给大家更新一篇我自己学习Java——JDBC的经验 Java中JDBC是(Java DataBase Connectivity)的简称,由java语言编写的类和接口组成,可为多种关系型数据库提供了 ...

  8. VOIP RTP RTSP 实现 Baresip 源码分析

    RTP 使用 udp 进行数据传输,udp 是不能保证,数据包一定可以到达的,也不提供时序.同时还有 MTU 限制. RTCP 用来配合 RTP 提供,传输报告,会话建立和退出. 一大批参考规范 * ...

  9. Fabric 源码学习:如何实现批量管理远程服务器?

    前不久,我写了一篇<Fabric教程>,简单来说,它是一个用 Python 开发的轻量级的远程系统管理工具,在远程登录服务器.执行 Shell 命令.批量管理服务器.远程部署等场景中,十分 ...

  10. POJ 1879

    栈和队列的综合应用,利用栈和队列分别模拟分,5分,时槽,以及小球队列 利用求出一天后的置换可以求出周期,进而求出最大公约数(可以利用矩阵的角度,也许可以简化,因为每次都是乘上一个相同的置换矩阵) 要注 ...