【导读】KDD 2019录取结果终于放榜了,今年Research和ADS两个 track共评审论文1900篇,其中Research track的录取率只有14%。今年也是KDD第一次采用双盲评审政策,并强调提交论文可重现内容。因此,论文质量特别值得期待。

KDD 2019录取论文终于放榜了!你的论文“中奖”了吗?

ACM SIGKDD(国际数据挖掘与知识发现大会,简称 KDD)是世界数据挖掘领域的最高级别的学术会议,由 ACM 的数据挖掘及知识发现专委会(SIGKDD)主办,被中国计算机协会推荐为 A 类会议。

自 1995 年以来,KDD 已经连续举办了二十余届大会,今年是第25届。今年的 KDD 大会将于 2019 年 8 月 4 日 ~8 日在美国阿拉斯加州安克雷奇市举行。

原定于4 月 28 日 (UTC-11),也就是北京时间 4 月 29 日晚上 7 点发出的录取结果通知,延迟了大半天之后终于陆续放榜。新智元也在twitter、朋友圈等看到论文作者们晒出录取结果。

录取率仅14%,强调论文结果可重现

作为数据挖掘领域最顶级的学术会议,KDD 大会以论文接收严格闻名,每年的接收率不超过 20%,因此颇受行业关注。今年也是KDD大会采用双盲评审的第一年。

与往年一样,KDD大会分为 Research 和 Applied Data Science 两个 track。

据了解,今年KDD Research track 共评审了约 1200 篇投稿,其中约 110 篇被接收为 oral 论文,60 篇被接收为 poster 论文,接收率约 14%

ADS track收到大约 700 篇论文,其中大约 45 篇被接收为 oral 论文,约 100 篇被接收为 poster 论文,接收率约 20.7%

相比之下,2018年KDD大会共评审了 1440 篇论文,其中,Research Track 评审了 983 篇论文,接收 181 篇,接收率为 18.4%;Applied Data Science Track 评审了 497 篇论文,接收 112 篇,接收率为 22.5%

下表总结了 KDD 2018 的论文接收数量和接受率。

KDD 大会涉及的议题大多跨学科且应用广泛,预计将会吸引来自统计、机器学习、数据库、万维网、生物信息学、多媒体、自然语言处理、人机交互、社会网络计算、高性能计算以及大数据挖掘等众多领域的专家和学者。

KDD官网的投稿要求

值得关注的是,今年KDD投稿通知中将“可重现性”作为重点,鼓励作者们在论文中公开研究代码和数据,汇报他们的方法在公开数据集上的实验结果,并尽可能完整描述论文中使用的算法和资源,以保证可重现性。

为了鼓励呈现结果的可重现性,KDD 2019 规定只有在文章最后额外提交两页附录体现“可重现性”内容(包括实验方法、经验评估和结果)的论文,才有资格参评“最佳论文”奖项。

在等待今年最佳论文出炉之前,让我们先回顾一下去年KDD Research Track的两篇最佳论文。

KDD 2018 Research Track 最佳论文回顾

Research Track 最佳论文

Adversarial attacks on classification models for Graphs

对图分类模型的对抗性攻击

论文地址:https://arxiv.org/abs/1805.07984

作者:Daniel Zügner (Technical University of Munich); Amir Akbarnejad (Technical University of Munich); Stephan Günnemann (Technical University of Munich)

摘要:图深度学习模型在节点分类任务中取得了很好的性能。尽管图深度学习模型越来越多,但目前还没有研究探索它们对对抗性攻击的鲁棒性。然而,在可能使用它们的领域中,例如网络,对抗是很常见的。

图深度学习模型是否很容易被愚弄呢?在这项工作中,我们介绍了第一个针对属性图( attributed graphs)的对抗性攻击的研究,特别关注利用图卷积思想的模型。除了测试时的攻击外,我们还研究了更具有挑战性的中毒/诱发攻击,这些攻击集中在机器学习模型的训练阶段。我们针对节点的特征和图结构生成对抗性扰动,从而获取实例之间的依赖关系。此外,我们通过保留重要的数据特征来确保这些扰动不会被察觉。

为了解决底层离散域问题,我们提出一种利用增量计算的有效算法 Nettack。我们的实验研究表明,即使只进行少量的扰动,节点分类的准确率也会显著下降。更重要的是,我们的攻击是可迁移的:学习的攻击可以推广到其他最先进的节点分类模型和无监督方法,即使只给出很少的关于图的知识,也同样能成功。

图:对图结构和节点特征的小小扰动导致目标的分类错误。

Research Track 最佳学生论文

XiaoIce Band: A Melody and Arrangement Generation Framework for Pop Music

小冰乐队:流行音乐的旋律与编曲框架

论文地址:http://www.kdd.org/kdd2018/accepted-papers/view/xiaoice-banda-melody-and-arrangement-generation-framework-for-pop-music

作者:Hongyuan Zhu (USTC); Qi Liu (USTC); Nicholas Jing Yuan (Microsoft); Chuan Qin (USTC); Jiawei Li (Soochow University); Kun Zhang (USTC); Guang Zhou (Microsoft); Furu Wei (Microsoft); Yuanchun Xu (Microsoft); Enhong Chen (USTC)

摘要:随着音乐创作知识的发展和近年来需求的增加,越来越多的公司和研究机构开始研究音乐的自动生成。但以往的模型在应用于歌曲生成时存在局限性,这既需要旋律,又需要编曲。此外,许多与歌曲质量有关的关键因素没有得到很好的解决,例如和弦进行和节奏模式。特别是。如何确保多音轨音乐的和谐,这仍然是一个有待探索的问题。

为此,我们对流行音乐的自动生成进行了重点研究,其中,我们考虑了旋律生成的和弦和节奏的影响,以及音乐编排的和声。我们提出了一种端到端的旋律和编曲生成框架,称为“小冰乐队”(XiaoIce Band),该框架产生了由几种乐器演奏的几个伴奏曲目组成的旋律音轨。

具体来说,我们设计了一种基于和弦的节奏和旋律交叉生成模型(CRMCG),以生成带有和弦进行的旋律。然后,我们提出一种基于多任务学习的多乐器协同编曲模型( Multi-Instrument Co-Arrangement Model ,MICA)。最后,我们在一个真实数据集上进行了广泛的实验,结果证明了XiaoIce Band的有效性。

欢迎关注磐创博客资源汇总站:http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:http://pytorch.panchuang.net/

KDD 2019放榜!录取率仅14%,强调可重现性的更多相关文章

  1. 数值分析案例:Newton插值预测2019城市(Asian)温度、Crout求解城市等温性的因素系数

    数值分析案例:Newton插值预测2019城市(Asian)温度.Crout求解城市等温性的因素系数 文章目录 数值分析案例:Newton插值预测2019城市(Asian)温度.Crout求解城市等温 ...

  2. 2019 HZNU Winter Training Day 14 Comprehensive Training

    A - Choosing Capital for Treeland CodeForces - 219D 题意:有一颗单向边的树,要选取一个结点作为首都.要求是这个结点到其它结点,总共需要翻转的路径数量 ...

  3. 14、Java并发性和多线程-Java ThreadLocal

    以下内容转自http://ifeve.com/java-theadlocal/: Java中的ThreadLocal类可以让你创建的变量只被同一个线程进行读和写操作.因此,尽管有两个线程同时执行一段相 ...

  4. 2019中国大学生程序设计竞赛-女生专场(重现赛)部分题解C-Function(贪心+优先队列) H-clock(模拟)

    Function 题目链接 Problem Description wls 有 n 个二次函数 Fi(x) = aix2 + bix + ci (1 ≤ i ≤ n). 现在他想在∑ni=1xi = ...

  5. 【NOIP2019模拟2019.9.4】B(期望的线性性)

    题目描述: \(1<=n,ai<=5*10^5\) 题解: 我是弱智我不会期望线性. 设\(E(a[i])\)表示第i个期望被减的个数. \(E(a[1])=a[1]\) 不难发现\(E( ...

  6. 昇腾CANN论文上榜CVPR,全景图像生成算法交互性再增强!

    摘要:近日,CVPR 2022放榜,基于CANN的AI论文<Interactive Image Synthesis with Panoptic Layout Generation>强势上榜 ...

  7. 2019 IEEEXtreme 13.0 Impact Factor 影响因子

    Impact Factor 题目大意 顾名思义,求影响因子.有 n 行 json 数据,第一行为期刊信息,后面为出版商出版的文章信息.   输入输出 点击查看详细 输入: 6 {"publi ...

  8. 在区块链上表白——使用C#将一句话放入比特币的区块链上

    最近在看区块链和比特币的知识,顺便简单研究了一下BitCoin的脚本语言,发现OP_RETURN这个命令可以在后面放入自己想说的内容,很多侧链啊,公证之类就是利用了这个特性,可以把一句话,或者一个哈希 ...

  9. 硬件十万个为什么——运放篇(五)PCB设计技巧

    1.在PCB设计时,芯片电源处旁路滤波等电容应尽可能的接近器件.典型距离是小于3MM 2.运算放大器芯片电源处的小陶瓷旁路电容在放大器处于输入高频信号时能够为放大器的高频特性提供能量电容值的选择依据输 ...

随机推荐

  1. Pandorabox固件路由器上申请Let's Encrypt证书,为内网里的多个web服务提供SSL支持

    对于家中宽带有公网IP的用户,有时我们需要将路由器内部网络的某些web服务通过端口转发暴露到外网(例如NAS远程访问),但HTTP是明文传输,有被监听的风险:如果在NAS上使用自签名证书,再端口转发, ...

  2. VirtualBox上使用kubeadm安装Kubernetes集群

    之前一直使用minikube练习,为了更贴近生产环境,使用VirtualBox搭建Kubernetes集群. 为了不是文章凌乱,把在搭建过程中遇到的问题及解决方法记在了另一篇文章:安装Kubernet ...

  3. Java2变量和运算符

    课后作业:[必做题] 1√AB互换 已知a,b均是整型变量,写出将a,b两个变量中的值互换的程序.(知识点:变量和运算符综合应用) [必做题] package com.two; public clas ...

  4. canvas初尝试

    最近学习了canvas,就拿它做了这么个小东西,感觉已经爱上canvas了.上代码 /* * @auhor : 开发部-前端组-李鑫超 * @property { tableData : {Array ...

  5. 关于Js的那些面试题

    1.javascript的typeof返回哪些数据类型 number string boolean Object function underfind 2.例举3种强制类型转换和2种隐式类型转换?强制 ...

  6. 初窥构建之法——记2020BUAA软工个人博客作业

    项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任建) 这个作业的要求在哪里 个人博客作业 我在这个课程的目标是 完成一次完整的软件开发经历并以博客的方式记录开发过程的心得掌握 ...

  7. 关于integer overflow错误

    前端突然报了integer overflow错误,int类型溢出也就是数字超过了int类型,一看很懵逼,查看后台日期发现是在Math.toIntExact()方法报错 那么我们看下方法内部代码: /* ...

  8. unzip详解,Linux系统如何解压缩zip文件?

    通常在使用linux时会自带了unzip,但是在最小化安装之后,可能系统里就无法使用此命令了. yum list unzip 查看是否安装 如果没安装过就继续 yum install unzip 安装 ...

  9. Django_orm

    Object Relational Mapping(ORM) ORM介绍 ORM概念 对象关系映射(Object Relational Mapping,简称ORM)模式是一种为了解决面向对象与关系数据 ...

  10. Python数据基本类型3

    -*- coding:utf-8 -*-字典 键值对数据 dict dic = {'键':'值'}存储数据 字典的查找快一些不可哈希的,就是可变的数据 可变的数据不能哈希 不可变的数据能哈希 pyth ...