L7过拟合欠拟合及其解决方案
1、涉及语句 import d2lzh1981 as d2l
数据1 :
d2lzh1981
链接:https://pan.baidu.com/s/1LyaZ84Q4M75GLOO-ZPvPoA
提取码:cf8s
2、FashionMNIST2065数据集
涉及语句
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size,root=’/home/kesci/input/FashionMNIST2065’)
数据2 : 为方便,可把数据直接下载下来。
为使用需
1)保持数据文件夹的路径把数据拷贝到jupyter notebook路径下
2)修改 home路径前加点 ,即’./home/kesci/input/FashionMNIST2065’)。
3)修改d2lzh1981文件下的utils.py 的load_data_fashion_mnist() 方法。为
torchvision.datasets.FashionMNIST(root=root, train=True, download=False, transform=transform)
FashionMNIST2065
链接:https://pan.baidu.com/s/1MLhOsusr5hqPn8sik1bUqw
提取码:v0l8**
10
过拟合、欠拟合及其解决方案
- 过拟合、欠拟合的概念
- 权重衰减
- 丢弃法
下载地址:下载
https://download.csdn.net/download/xiuyu1860/12156306
模型选择、过拟合和欠拟合
训练误差和泛化误差
在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差(generalization error)。通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。计算训练误差和泛化误差可以使用之前介绍过的损失函数,例如线性回归用到的平方损失函数和softmax回归用到的交叉熵损失函数。
机器学习模型应关注降低泛化误差。
模型选择
验证数据集
从严格意义上讲,测试集只能在所有超参数和模型参数选定后使用一次。不可以使用测试数据选择模型,如调参。由于无法从训练误差估计泛化误差,因此也不应只依赖训练数据选择模型。鉴于此,我们可以预留一部分在训练数据集和测试数据集以外的数据来进行模型选择。这部分数据被称为验证数据集,简称验证集(validation set)。例如,我们可以从给定的训练集中随机选取一小部分作为验证集,而将剩余部分作为真正的训练集。
K折交叉验证
由于验证数据集不参与模型训练,当训练数据不够用时,预留大量的验证数据显得太奢侈。一种改善的方法是K折交叉验证(K-fold cross-validation)。在K折交叉验证中,我们把原始训练数据集分割成K个不重合的子数据集,然后我们做K次模型训练和验证。每一次,我们使用一个子数据集验证模型,并使用其他K-1个子数据集来训练模型。在这K次训练和验证中,每次用来验证模型的子数据集都不同。最后,我们对这K次训练误差和验证误差分别求平均。
过拟合和欠拟合
接下来,我们将探究模型训练中经常出现的两类典型问题:
- 一类是模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting);
- 另一类是模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。
在实践中,我们要尽可能同时应对欠拟合和过拟合。虽然有很多因素可能导致这两种拟合问题,在这里我们重点讨论两个因素:模型复杂度和训练数据集大小。
模型复杂度
为了解释模型复杂度,我们以多项式函数拟合为例。给定一个由标量数据特征xxx和对应的标量标签yyy组成的训练数据集,多项式函数拟合的目标是找一个KKK阶多项式函数
y^=b+∑k=1Kxkwk
\hat{y} = b + \sum_{k=1}^K x^k w_k
y^=b+k=1∑Kxkwk
来近似 yyy。在上式中,wkw_kwk是模型的权重参数,bbb是偏差参数。与线性回归相同,多项式函数拟合也使用平方损失函数。特别地,一阶多项式函数拟合又叫线性函数拟合。
给定训练数据集,模型复杂度和误差之间的关系:
训练数据集大小
影响欠拟合和过拟合的另一个重要因素是训练数据集的大小。一般来说,如果训练数据集中样本数过少,特别是比模型参数数量(按元素计)更少时,过拟合更容易发生。此外,泛化误差不会随训练数据集里样本数量增加而增大。因此,在计算资源允许的范围之内,我们通常希望训练数据集大一些,特别是在模型复杂度较高时,例如层数较多的深度学习模型。
多项式函数拟合实验
%matplotlib inline
import torch
import numpy as np
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
print(torch.__version__)
1.3.0
初始化模型参数
n_train, n_test, true_w, true_b = 100, 100, [1.2, -3.4, 5.6], 5
features = torch.randn((n_train + n_test, 1))
poly_features = torch.cat((features, torch.pow(features, 2), torch.pow(features, 3)), 1)
labels = (true_w[0] * poly_features[:, 0] + true_w[1] * poly_features[:, 1]
+ true_w[2] * poly_features[:, 2] + true_b)
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)
features[:2], poly_features[:2], labels[:2]
(tensor([[1.0065],
[0.4447]]), tensor([[1.0065, 1.0131, 1.0197],
[0.4447, 0.1977, 0.0879]]), tensor([8.4715, 5.3434]))
定义、训练和测试模型
def semilogy(x_vals, y_vals, x_label, y_label, x2_vals=None, y2_vals=None,
legend=None, figsize=(3.5, 2.5)):
# d2l.set_figsize(figsize)
d2l.plt.xlabel(x_label)
d2l.plt.ylabel(y_label)
d2l.plt.semilogy(x_vals, y_vals)
if x2_vals and y2_vals:
d2l.plt.semilogy(x2_vals, y2_vals, linestyle=':')
d2l.plt.legend(legend)
num_epochs, loss = 100, torch.nn.MSELoss()
def fit_and_plot(train_features, test_features, train_labels, test_labels):
# 初始化网络模型
net = torch.nn.Linear(train_features.shape[-1], 1)
# 通过Linear文档可知,pytorch已经将参数初始化了,所以我们这里就不手动初始化了
# 设置批量大小
batch_size = min(10, train_labels.shape[0])
dataset = torch.utils.data.TensorDataset(train_features, train_labels) # 设置数据集
train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True) # 设置获取数据方式
optimizer = torch.optim.SGD(net.parameters(), lr=0.01) # 设置优化函数,使用的是随机梯度下降优化
train_ls, test_ls = [], []
for _ in range(num_epochs):
for X, y in train_iter: # 取一个批量的数据
l = loss(net(X), y.view(-1, 1)) # 输入到网络中计算输出,并和标签比较求得损失函数
optimizer.zero_grad() # 梯度清零,防止梯度累加干扰优化
l.backward() # 求梯度
optimizer.step() # 迭代优化函数,进行参数优化
train_labels = train_labels.view(-1, 1)
test_labels = test_labels.view(-1, 1)
train_ls.append(loss(net(train_features), train_labels).item()) # 将训练损失保存到train_ls中
test_ls.append(loss(net(test_features), test_labels).item()) # 将测试损失保存到test_ls中
print('final epoch: train loss', train_ls[-1], 'test loss', test_ls[-1])
semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
range(1, num_epochs + 1), test_ls, ['train', 'test'])
print('weight:', net.weight.data,
'\nbias:', net.bias.data)
三阶多项式函数拟合(正常)
fit_and_plot(poly_features[:n_train, :], poly_features[n_train:, :], labels[:n_train], labels[n_train:])
final epoch: train loss 0.00013102585216984153 test loss 0.00014579357230104506
weight: tensor([[ 1.2092, -3.3994, 5.5965]])
bias: tensor([5.0003])
线性函数拟合(欠拟合)
fit_and_plot(features[:n_train, :], features[n_train:, :], labels[:n_train], labels[n_train:])
final epoch: train loss 56.10523986816406 test loss 203.95297241210938
weight: tensor([[12.9553]])
bias: tensor([1.8765])
训练样本不足(过拟合)
fit_and_plot(poly_features[0:2, :], poly_features[n_train:, :], labels[0:2], labels[n_train:])
final epoch: train loss 0.30480968952178955 test loss 336.5728759765625
weight: tensor([[2.4363, 1.9240, 1.2780]])
bias: tensor([3.0333])
权重衰减
方法
权重衰减等价于 L2L_2L2 范数正则化(regularization)。正则化通过为模型损失函数添加惩罚项使学出的模型参数值较小,是应对过拟合的常用手段。
L2 范数正则化(regularization)
L2L_2L2范数正则化在模型原损失函数基础上添加L2L_2L2范数惩罚项,从而得到训练所需要最小化的函数。L2L_2L2范数惩罚项指的是模型权重参数每个元素的平方和与一个正的常数的乘积。以线性回归中的线性回归损失函数为例
ℓ(w1,w2,b)=1n∑i=1n12(x1(i)w1+x2(i)w2+b−y(i))2
\ell(w_1, w_2, b) = \frac{1}{n} \sum_{i=1}^n \frac{1}{2}\left(x_1^{(i)} w_1 + x_2^{(i)} w_2 + b - y^{(i)}\right)^2
ℓ(w1,w2,b)=n1i=1∑n21(x1(i)w1+x2(i)w2+b−y(i))2
其中w1,w2w_1, w_2w1,w2是权重参数,bbb是偏差参数,样本iii的输入为x1(i),x2(i)x_1^{(i)}, x_2^{(i)}x1(i),x2(i),标签为y(i)y^{(i)}y(i),样本数为nnn。将权重参数用向量w=[w1,w2]\boldsymbol{w} = [w_1, w_2]w=[w1,w2]表示,带有L2L_2L2范数惩罚项的新损失函数为
ℓ(w1,w2,b)+λ2n∣w∣2,
\ell(w_1, w_2, b) + \frac{\lambda}{2n} |\boldsymbol{w}|^2,
ℓ(w1,w2,b)+2nλ∣w∣2,
其中超参数λ>0\lambda > 0λ>0。当权重参数均为0时,惩罚项最小。当λ\lambdaλ较大时,惩罚项在损失函数中的比重较大,这通常会使学到的权重参数的元素较接近0。当λ\lambdaλ设为0时,惩罚项完全不起作用。上式中L2L_2L2范数平方∣w∣2|\boldsymbol{w}|^2∣w∣2展开后得到w12+w22w_1^2 + w_2^2w12+w22。
有了L2L_2L2范数惩罚项后,在小批量随机梯度下降中,我们将线性回归一节中权重w1w_1w1和w2w_2w2的迭代方式更改为
w1←(1−ηλ∣B∣)w1−η∣B∣∑i∈Bx1(i)(x1(i)w1+x2(i)w2+b−y(i)),w2←(1−ηλ∣B∣)w2−η∣B∣∑i∈Bx2(i)(x1(i)w1+x2(i)w2+b−y(i)).
\begin{aligned} w_1 &\leftarrow \left(1- \frac{\eta\lambda}{|\mathcal{B}|} \right)w_1 - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}}x_1^{(i)} \left(x_1^{(i)} w_1 + x_2^{(i)} w_2 + b - y^{(i)}\right),\\ w_2 &\leftarrow \left(1- \frac{\eta\lambda}{|\mathcal{B}|} \right)w_2 - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}}x_2^{(i)} \left(x_1^{(i)} w_1 + x_2^{(i)} w_2 + b - y^{(i)}\right). \end{aligned}
w1w2←(1−∣B∣ηλ)w1−∣B∣ηi∈B∑x1(i)(x1(i)w1+x2(i)w2+b−y(i)),←(1−∣B∣ηλ)w2−∣B∣ηi∈B∑x2(i)(x1(i)w1+x2(i)w2+b−y(i)).
可见,L2L_2L2范数正则化令权重w1w_1w1和w2w_2w2先自乘小于1的数,再减去不含惩罚项的梯度。因此,L2L_2L2范数正则化又叫权重衰减。权重衰减通过惩罚绝对值较大的模型参数为需要学习的模型增加了限制,这可能对过拟合有效。
高维线性回归实验从零开始的实现
下面,我们以高维线性回归为例来引入一个过拟合问题,并使用权重衰减来应对过拟合。设数据样本特征的维度为ppp。对于训练数据集和测试数据集中特征为x1,x2,…,xpx_1, x_2, \ldots, x_px1,x2,…,xp的任一样本,我们使用如下的线性函数来生成该样本的标签:
y=0.05+∑i=1p0.01xi+ϵ
y = 0.05 + \sum_{i = 1}^p 0.01x_i + \epsilon
y=0.05+i=1∑p0.01xi+ϵ
其中噪声项ϵ\epsilonϵ服从均值为0、标准差为0.01的正态分布。为了较容易地观察过拟合,我们考虑高维线性回归问题,如设维度p=200p=200p=200;同时,我们特意把训练数据集的样本数设低,如20。
%matplotlib inline
import torch
import torch.nn as nn
import numpy as np
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
print(torch.__version__)
1.3.0
初始化模型参数
与前面观察过拟合和欠拟合现象的时候相似,在这里不再解释。
n_train, n_test, num_inputs = 20, 100, 200
true_w, true_b = torch.ones(num_inputs, 1) * 0.01, 0.05
features = torch.randn((n_train + n_test, num_inputs))
labels = torch.matmul(features, true_w) + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)
train_features, test_features = features[:n_train, :], features[n_train:, :]
train_labels, test_labels = labels[:n_train], labels[n_train:]
# 定义参数初始化函数,初始化模型参数并且附上梯度
def init_params():
w = torch.randn((num_inputs, 1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
return [w, b]
定义L2范数惩罚项
def l2_penalty(w):
return (w**2).sum() / 2
定义训练和测试
batch_size, num_epochs, lr = 1, 100, 0.003
net, loss = d2l.linreg, d2l.squared_loss
dataset = torch.utils.data.TensorDataset(train_features, train_labels)
train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True)
def fit_and_plot(lambd):
w, b = init_params()
train_ls, test_ls = [], []
for _ in range(num_epochs):
for X, y in train_iter:
# 添加了L2范数惩罚项
l = loss(net(X, w, b), y) + lambd * l2_penalty(w)
l = l.sum()
if w.grad is not None:
w.grad.data.zero_()
b.grad.data.zero_()
l.backward()
d2l.sgd([w, b], lr, batch_size)
train_ls.append(loss(net(train_features, w, b), train_labels).mean().item())
test_ls.append(loss(net(test_features, w, b), test_labels).mean().item())
d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
range(1, num_epochs + 1), test_ls, ['train', 'test'])
print('L2 norm of w:', w.norm().item())
观察过拟合
fit_and_plot(lambd=0)
L2 norm of w: 13.291242599487305
使用权重衰减
fit_and_plot(lambd=3)
L2 norm of w: 0.04461875185370445
简洁实现
def fit_and_plot_pytorch(wd):
# 对权重参数衰减。权重名称一般是以weight结尾
net = nn.Linear(num_inputs, 1)
nn.init.normal_(net.weight, mean=0, std=1)
nn.init.normal_(net.bias, mean=0, std=1)
optimizer_w = torch.optim.SGD(params=[net.weight], lr=lr, weight_decay=wd) # 对权重参数衰减
optimizer_b = torch.optim.SGD(params=[net.bias], lr=lr) # 不对偏差参数衰减
train_ls, test_ls = [], []
for _ in range(num_epochs):
for X, y in train_iter:
l = loss(net(X), y).mean()
optimizer_w.zero_grad()
optimizer_b.zero_grad()
l.backward()
# 对两个optimizer实例分别调用step函数,从而分别更新权重和偏差
optimizer_w.step()
optimizer_b.step()
train_ls.append(loss(net(train_features), train_labels).mean().item())
test_ls.append(loss(net(test_features), test_labels).mean().item())
d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
range(1, num_epochs + 1), test_ls, ['train', 'test'])
print('L2 norm of w:', net.weight.data.norm().item())
fit_and_plot_pytorch(0)
L2 norm of w: 14.70448112487793
fit_and_plot_pytorch(3)
L2 norm of w: 0.0769280269742012
丢弃法
多层感知机中神经网络图描述了一个单隐藏层的多层感知机。其中输入个数为4,隐藏单元个数为5,且隐藏单元hih_ihi(i=1,…,5i=1, \ldots, 5i=1,…,5)的计算表达式为
hi=ϕ(x1w1i+x2w2i+x3w3i+x4w4i+bi)
h_i = \phi\left(x_1 w_{1i} + x_2 w_{2i} + x_3 w_{3i} + x_4 w_{4i} + b_i\right)
hi=ϕ(x1w1i+x2w2i+x3w3i+x4w4i+bi)
这里ϕ\phiϕ是激活函数,x1,…,x4x_1, \ldots, x_4x1,…,x4是输入,隐藏单元iii的权重参数为w1i,…,w4iw_{1i}, \ldots, w_{4i}w1i,…,w4i,偏差参数为bib_ibi。当对该隐藏层使用丢弃法时,该层的隐藏单元将有一定概率被丢弃掉。设丢弃概率为ppp,那么有ppp的概率hih_ihi会被清零,有1−p1-p1−p的概率hih_ihi会除以1−p1-p1−p做拉伸。丢弃概率是丢弃法的超参数。具体来说,设随机变量ξi\xi_iξi为0和1的概率分别为ppp和1−p1-p1−p。使用丢弃法时我们计算新的隐藏单元hi′h_i'hi′
hi′=ξi1−phi
h_i' = \frac{\xi_i}{1-p} h_i
hi′=1−pξihi
由于E(ξi)=1−pE(\xi_i) = 1-pE(ξi)=1−p,因此
E(hi′)=E(ξi)1−phi=hi
E(h_i') = \frac{E(\xi_i)}{1-p}h_i = h_i
E(hi′)=1−pE(ξi)hi=hi
即丢弃法不改变其输入的期望值。让我们对之前多层感知机的神经网络中的隐藏层使用丢弃法,一种可能的结果如图所示,其中h2h_2h2和h5h_5h5被清零。这时输出值的计算不再依赖h2h_2h2和h5h_5h5,在反向传播时,与这两个隐藏单元相关的权重的梯度均为0。由于在训练中隐藏层神经元的丢弃是随机的,即h1,…,h5h_1, \ldots, h_5h1,…,h5都有可能被清零,输出层的计算无法过度依赖h1,…,h5h_1, \ldots, h_5h1,…,h5中的任一个,从而在训练模型时起到正则化的作用,并可以用来应对过拟合。在测试模型时,我们为了拿到更加确定性的结果,一般不使用丢弃法
丢弃法从零开始的实现
%matplotlib inline
import torch
import torch.nn as nn
import numpy as np
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
print(torch.__version__)
1.3.0
def dropout(X, drop_prob):
X = X.float()
assert 0 <= drop_prob <= 1
keep_prob = 1 - drop_prob
# 这种情况下把全部元素都丢弃
if keep_prob == 0:
return torch.zeros_like(X)
mask = (torch.rand(X.shape) < keep_prob).float()
return mask * X / keep_prob
X = torch.arange(16).view(2, 8)
dropout(X, 0)
tensor([[ 0., 1., 2., 3., 4., 5., 6., 7.],
[ 8., 9., 10., 11., 12., 13., 14., 15.]])
dropout(X, 0.5)
tensor([[ 0., 2., 4., 0., 0., 0., 0., 14.],
[16., 0., 20., 0., 24., 0., 0., 30.]])
dropout(X, 1.0)
tensor([[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])
# 参数的初始化
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256
W1 = torch.tensor(np.random.normal(0, 0.01, size=(num_inputs, num_hiddens1)), dtype=torch.float, requires_grad=True)
b1 = torch.zeros(num_hiddens1, requires_grad=True)
W2 = torch.tensor(np.random.normal(0, 0.01, size=(num_hiddens1, num_hiddens2)), dtype=torch.float, requires_grad=True)
b2 = torch.zeros(num_hiddens2, requires_grad=True)
W3 = torch.tensor(np.random.normal(0, 0.01, size=(num_hiddens2, num_outputs)), dtype=torch.float, requires_grad=True)
b3 = torch.zeros(num_outputs, requires_grad=True)
params = [W1, b1, W2, b2, W3, b3]
drop_prob1, drop_prob2 = 0.2, 0.5
def net(X, is_training=True):
X = X.view(-1, num_inputs)
H1 = (torch.matmul(X, W1) + b1).relu()
if is_training: # 只在训练模型时使用丢弃法
H1 = dropout(H1, drop_prob1) # 在第一层全连接后添加丢弃层
H2 = (torch.matmul(H1, W2) + b2).relu()
if is_training:
H2 = dropout(H2, drop_prob2) # 在第二层全连接后添加丢弃层
return torch.matmul(H2, W3) + b3
def evaluate_accuracy(data_iter, net):
acc_sum, n = 0.0, 0
for X, y in data_iter:
if isinstance(net, torch.nn.Module):
net.eval() # 评估模式, 这会关闭dropout
acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
net.train() # 改回训练模式
else: # 自定义的模型
if('is_training' in net.__code__.co_varnames): # 如果有is_training这个参数
# 将is_training设置成False
acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item()
else:
acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
n += y.shape[0]
return acc_sum / n
num_epochs, lr, batch_size = 5, 100.0, 256 # 这里的学习率设置的很大,原因与之前相同。
loss = torch.nn.CrossEntropyLoss()
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, root='/home/kesci/input/FashionMNIST2065')
d2l.train_ch3(
net,
train_iter,
test_iter,
loss,
num_epochs,
batch_size,
params,
lr)
epoch 1, loss 0.0045, train acc 0.548, test acc 0.763
epoch 2, loss 0.0023, train acc 0.783, test acc 0.773
epoch 3, loss 0.0019, train acc 0.821, test acc 0.830
epoch 4, loss 0.0017, train acc 0.841, test acc 0.822
epoch 5, loss 0.0016, train acc 0.846, test acc 0.848
简洁实现
net = nn.Sequential(
d2l.FlattenLayer(),
nn.Linear(num_inputs, num_hiddens1),
nn.ReLU(),
nn.Dropout(drop_prob1),
nn.Linear(num_hiddens1, num_hiddens2),
nn.ReLU(),
nn.Dropout(drop_prob2),
nn.Linear(num_hiddens2, 10)
)
for param in net.parameters():
nn.init.normal_(param, mean=0, std=0.01)
optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)
epoch 1, loss 0.0046, train acc 0.542, test acc 0.731
epoch 2, loss 0.0023, train acc 0.781, test acc 0.742
epoch 3, loss 0.0019, train acc 0.823, test acc 0.821
总结
欠拟合现象:模型无法达到一个较低的误差
过拟合现象:训练误差较低但是泛化误差依然较高,二者相差较大
L7过拟合欠拟合及其解决方案的更多相关文章
- 动手学习Pytorch(4)--过拟合欠拟合及其解决方案
过拟合.欠拟合及其解决方案 过拟合.欠拟合的概念 权重衰减 丢弃法 模型选择.过拟合和欠拟合 训练误差和泛化误差 在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差 ...
- L13过拟合欠拟合及其解决方案
过拟合.欠拟合及其解决方案 过拟合.欠拟合的概念 权重衰减 丢弃法 模型选择.过拟合和欠拟合 训练误差和泛化误差 在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差(g ...
- 过拟合/欠拟合&logistic回归等总结(Ng第二课)
昨天学习完了Ng的第二课,总结如下: 过拟合:欠拟合: 参数学习算法:非参数学习算法 局部加权回归 KD tree 最小二乘 中心极限定律 感知器算法 sigmod函数 梯度下降/梯度上升 二元分类 ...
- [DeeplearningAI笔记]改善深层神经网络1.1_1.3深度学习使用层面_偏差/方差/欠拟合/过拟合/训练集/验证集/测试集
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.1 训练/开发/测试集 对于一个数据集而言,可以将一个数据集分为三个部分,一部分作为训练集,一部分作为简单交叉验证集(dev)有时候也成为验 ...
- 过拟合VS欠拟合、偏差VS方差
1. 过拟合 欠拟合 过拟合:在训练集(training set)上表现好,但是在测试集上效果差,也就是说在已知的数据集合中非常好,但是在添加一些新的数据进来训练效果就会差很多,造成这样的原因是考虑影 ...
- 局部加权回归、欠拟合、过拟合(Locally Weighted Linear Regression、Underfitting、Overfitting)
欠拟合.过拟合 如下图中三个拟合模型.第一个是一个线性模型,对训练数据拟合不够好,损失函数取值较大.如图中第二个模型,如果我们在线性模型上加一个新特征项,拟合结果就会好一些.图中第三个是一个包含5阶多 ...
- 第三集 欠拟合与过拟合的概念、局部加权回归、logistic回归、感知器算法
课程大纲 欠拟合的概念(非正式):数据中某些非常明显的模式没有成功的被拟合出来.如图所示,更适合这组数据的应该是而不是一条直线. 过拟合的概念(非正式):算法拟合出的结果仅仅反映了所给的特定数据的特质 ...
- TensorFlow从1到2(八)过拟合和欠拟合的优化
<从锅炉工到AI专家(6)>一文中,我们把神经网络模型降维,简单的在二维空间中介绍了过拟合和欠拟合的现象和解决方法.但是因为条件所限,在该文中我们只介绍了理论,并没有实际观察现象和应对. ...
- 斯坦福大学公开课机器学习: advice for applying machine learning - evaluatin a phpothesis(怎么评估学习算法得到的假设以及如何防止过拟合或欠拟合)
怎样评价我们的学习算法得到的假设以及如何防止过拟合和欠拟合的问题. 当我们确定学习算法的参数时,我们考虑的是选择参数来使训练误差最小化.有人认为,得到一个很小的训练误差一定是一件好事.但其实,仅仅是因 ...
随机推荐
- url,解释器,响应器,版本控制,分页
路由控制 -基本路由写法:咱们一直写的
- LeetCode45——从搜索算法推导到贪心
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是LeetCode系列的第25篇文章,今天我们一起来看的是LeetCode的第45题,Jump Game II. 有同学后台留言问我说, ...
- 用java分组查elasticsearch
哎,编程路漫漫,一坑又一坑,爬完还会掉,何时是尽头! 今朝有酒今朝醉,程序不对不敢睡! 还是接口昂,今天还是接口有问题,我是很菜,很笨,但是我还是要努力!! 正文: 接口需求是这样的,根据车型查询在线 ...
- reset slave all更彻底
reset slave是各版本Mysql都有的功能,可以让slave忘记自己在master binary log中的复制位置. reset slave命令主要完成以下工作内容: -删除master.i ...
- innobackupex备份过程(有图有真相)
innobackupex命令构成: 1. Innobackupex内部封装了xtrabackup和mysqldump命令: 2. Xtrabackup是用来备份innoDB表的,内部实现对innoDB ...
- 120prop-python3.7 读写.properties文件
120prop-python3.7 读写.properties文件 转载 nature_ph 最后发布于2019-07-30 10:12:05 阅读数 229 收藏 发布于2019-07-30 10: ...
- matplotlib命令与格式:参数配置文件与参数配置
转自 https://my.oschina.net/swuly302/blog/94805 自定义matplotlib Created Saturday 08 December 2012 5.1 ma ...
- DeepMind爆出无监督表示学习模型BigBiGAN,GAN之父点赞!
[导读]今天,DeepMind爆出一篇重磅论文,引发学术圈热烈反响:基于最强图像生成器BigGAN,打造了BigBiGAN,在无监督表示学习和图像生成方面均实现了最先进的性能!Ian Goodfell ...
- AC自动机(初步学习)
一开始讲AC自动机就是在字典树上做一个KMP,吓得我感觉好难,不过了解了以后,感觉也就是有点难度,不吓人. 它只是在字典树上用了KMP的思想 典型问题:给n个模式串和一个文本串,问有多少个模式串在文本 ...
- coding++ :JS对日期的神操作封装版
格式化日期: /** * 格式化日期 * @param fmt 例如:yyyy-MM-dd 等 * @returns {*} * @constructor */ Date.prototype.Form ...