概率DP——BZOJ4008 [HNOI2015]亚瑟王
[HNOI2015]亚瑟王
Description
小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑。他决定,在脱坑之前,最后再来打一盘亚瑟王。既然是最后一战,就一定要打得漂亮。众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的。作为一个非洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值。但他已经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一下当欧洲人是怎样的体验。 本题中我们将考虑游戏的一个简化版模型。 玩家有一套卡牌,共 n张。游戏时,玩家将 n 张卡牌排列成某种顺序,排列后将卡牌按从前往后依次编号为 1 ~ n。本题中,顺序已经确定,即为输入的顺序。每张卡牌都有一个技能。第 i 张卡牌的技能发动概率为 pi,如果成功发动,则会对敌方造成di点伤害。也只有通过发动技能,卡牌才能对敌方造成伤害。基于现实因素以及小K非洲血统的考虑,pi不会为 0,也不会为 1,即 0 < pi < 1。
Input
输入文件的第一行包含一个整数 T,代表测试数据组数。
Output
对于每组数据,输出一行,包含一个实数,为这套卡牌在这一局游戏中造成的伤害的期望值。对于每一行输出,只有当你的输出和标准答案的相对误差不超过10^-8时——即|a-o|/a<=10-8时(其中a是标准答案,o是输出),你的输出才会被判为正确。
Sample Input
3 2
0.5000 2
0.3000 3
0.9000 1
Sample Output
HINT
一共有 13 种可能的情况:
虽然概率DP是很明显了,但是状态转移方程真鸡儿难想。
思考的角度完全错了,做题的时候一直在想如何用f[i][j]表示第i轮前j张牌的期望伤害之类的,没想到正解转移的根本不是期望。。。
实际上伤害的期望值$E=k[i]\times d[i]$,其中$k[i]$为第i张牌发动技能的概率。
于是问题就转化为了求$k[i]$
设f[i][j]为转移到第i张牌的时候,还剩j轮的概率。
显然,转移到第i张牌的时候,还剩j轮的概率为 "在i-1张牌时剩j轮并未发动技能的概率" 加上 "在i-1张牌时剩j+1轮并发动技能的概率"。即$$f[i][j]=f[i-1][j]\times(1-p[i-1])^j+f[i-1][j+1]\times(1-(1-p[i-1])^j+1)$$
那么$$E_{ans}=\sum_{i=1}^n{\sum_{j=1}^r (1-(1-p[i])^j)\times f[i][j]\times d[i]}$$
代码不长。
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
#define foru(i,x,y) for(int i=x;i<=y;i++)
using namespace std;
const int N=;
int n,T,r,d[N];
double p[N],ans,f[N][N];
int main(){
scanf("%d",&T);
while(T--){
memset(f,,sizeof(f));
scanf("%d%d",&n,&r);
f[][r]=;
foru(i,,n)scanf("%lf%d",&p[i],&d[i]);
double ans=;
foru(i,,n)
foru(j,,r){
f[i][j]=(double)f[i-][j]*pow(-p[i-],j)+f[i-][j+]*(-pow(-p[i-],j+));
ans+=(double)f[i][j]*(-pow(-p[i],j))*d[i];
}
printf("%.10lf\n",ans);
}
return ;
}
概率DP——BZOJ4008 [HNOI2015]亚瑟王的更多相关文章
- BZOJ4008:[HNOI2015]亚瑟王(DP,概率期望)
Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个 ...
- 2018.10.13 bzoj4008: [HNOI2015]亚瑟王(概率dp)
传送门 马上2点考初赛了,心里有点小紧张. 做道概率dp压压惊吧. 话说这题最开始想错了. 最开始的方法是考虑f[i][j]f[i][j]f[i][j]表示第iii轮出牌为jjj的概率. 然后用第ii ...
- BZOJ4008: [HNOI2015]亚瑟王(期望dp)
Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 1952 Solved: 1159[Submit][Status] ...
- Bzoj4008 [HNOI2015]亚瑟王
Time Limit: 20 Sec Memory Limit: 512 MBSec Special Judge Submit: 1009 Solved: 605[Submit][Status] ...
- 【文文殿下】[BZOJ4008] [HNOI2015] 亚瑟王
题解 这是一个经典的概率DP模型 设\(f_{i,j}\)表示考虑到前\(i\)张牌,有\(j\)轮没打出牌的可能性,那么显然\(f_{0,r} = 1\). 考虑第\(i+1\)张牌,他可能在剩下的 ...
- BZOJ4008 [HNOI2015]亚瑟王 【概率dp】
题目链接 BZOJ4008 题解 要求所有牌造成伤害的期望,就是求每一张牌发动的概率\(g[i]\) 我们发现一张牌能否发动,还与其前面的牌是否发动有关 那我们设\(f[i][j]\)表示前\(i\) ...
- BZOJ4008. [HNOI2015]亚瑟王 期望概率dp
看到这道题想什么? 一个好转移的状态由于T最多444所以把每个点控制在O(400000)以内,所以对于n和r最多乘一次因此猜f[n][r],f[r][n],首先一轮一轮的搞不好转移,那么先想一想f[n ...
- bzoj4008: [HNOI2015]亚瑟王【期望dp】
一个特别神奇的dp,特别厉害. f(i, j) 表示 有 j 轮发动技能的牌在 [1, i] 另外的m - j轮在[i + 1, n]之间的概率. 怎么转移呢? 首先考虑i这张牌不选的情况,f(i - ...
- BZOJ4008 : [HNOI2015]亚瑟王(期望dp)
题意 略(看了20min才看懂...) 题解 我一开始天真地一轮轮推期望,发现根本不好算... 唉~ 不会做就只能抄题解咯 看了一波DOFY大佬的解法qwq 发现有句神奇的话 记住,期望要倒着推... ...
随机推荐
- mybatis中foreach collection的三种用法
foreach的主要用在构建in条件中,它可以在SQL语句中进行迭代一个集合. foreach元素的属性主要有 item,index,collection,open,separator,close. ...
- 【MySQL 组复制】1.组复制技术简介
组复制有两种模式 单主模式(single-primary/single-master)下自动选举出一个主节点,从而只允许在同一时刻只有该主节点可以更新数据. 对于MySQL的高级使用人员,可以通过复制 ...
- 【前缀思想】二叉树中所有距离为 K 的结点
863. 二叉树中所有距离为 K 的结点 class Solution { Map<TreeNode,String>map=new HashMap<>(); String pa ...
- jupyter notebook 安装配置使用,+目录插件安装
1.安装 pip3 install jupyter 2.配置 2.1. 生成一个 notebook 配置文件 jupyter notebook --generate-config /root/.jup ...
- Element.shadowRoot
Element.shadowRoot http://www.zhuyuntao.cn/shadow-dom的样式/ Shadow DOM的样式 我们已经可以使用原生的操作DOM的方式和使用模板的方式来 ...
- java this的用法以及原理
/** * this存在方法中,在方法中被调用. * 且是非static方法中被调用.(this 表示这个类的当前实例,而静态方法不依赖于该类的任何实例,随着类产生而装载,因此方法内不能引用 this ...
- MySql、Mongodb和Redis的区别
NoSQL 的全称是 Not Only SQL,也可以理解非关系型的数据库,是一种新型的革命式的数据库设计方式,不过它不是为了取代传统的关系型数据库而被设计的,它们分别代表了不同的数据库设计思路. M ...
- Elasticsearch节点类型
当我们启动Elasticsearch的实例,就会启动至少一个节点.相同集群名的多个节点的连接就组成了一个集群. 在默认情况下,集群中的每个节点都可以处理http请求和集群节点间的数据传输,集群中所有的 ...
- G6:AntV 的图可视化与图分析
导读 G6 是 AntV 旗下的一款专业级图可视化引擎,它在高定制能力的基础上,提供简单.易用的接口以及一系列设计优雅的图可视化解决方案,是阿里经济体图可视化与图分析的基础设施.今年 AntV 11. ...
- Pmw大控件
Python大控件——Pmw——是合成的控件,以Tkinter控件为基类,是完全在Python内写的.它们可以很方便地增加功能性的应用,而不必写一堆代码.特别是,组合框和内部确认计划的输入字段放在一起 ...