[OpenGL](翻译+补充)投影矩阵的推导
1.简介
基本是翻译和补充 http://www.songho.ca/opengl/gl_projectionmatrix.html
计算机显示器是一个2D的平面,一个3D的场景要被OpenGL渲染必须被投影到2D平面上以生成2D的图像。在OpenGL中,GL_PROJECTION
矩阵可以用来进行投影变换。首先,它将所有的顶点数据从相机坐标系(eye coordinates)转换到裁剪坐标系(clip coordinates),然后通过除以裁剪空间坐标的w
值,将裁剪空间坐标系转换到归一化设备坐标系(normalized device coordinates,NDC)
我们需要注意的一点就是,裁剪和NDC变换都通过GL_PROJECTION
矩阵来完成。之后的文章,将会利用6个参数来构建投影矩阵,这六个参数是:left,right,bottom,top,near,far,分别为近裁剪面的左右下上边界,近裁剪面,远裁剪面。
视锥体剔除是在裁剪坐标下进行的,在转换到NDC坐标系之前。已经变换到裁剪坐标系的坐标\(x_c,y_c,z_c\)会和\(w_c\)进行比较,如果裁剪坐标大于\(w_c\)或小于\(-w_c\),则顶点会被剔除,OpenGL会重建多边形的边。
ps.解释一下为什么要和\(w_c\)进行比较。因为NDC坐标的范围是\([-1,1]\),而裁剪坐标和NDC坐标之间的关系是\(x_c/w_c = x_n\),所以\(x_c\)必须得在\([-w_c,w_c]\)之间才可见,其他两个轴同理。不是在NDC坐标阶段进行裁剪,是因为不可见的顶点,没有必要在对其进行运算,会消耗资源。在作用完投影矩阵后,得到的是齐次坐标,OpenGL会自动除以\(w_c\),以得到笛卡尔坐标,OpenGL应该是在除以\(w_c\)之前进行视锥体剔除工作。
2.透视投影
在透视投影中,1个3D的点在一个像被切了一刀的金字塔的视锥体中,此时的坐标系是相机坐标系,这个坐标系会被映射正方体的NDC坐标系中。
- \(x:[l,r]->[-1,1]\)
- \(y:[b,t]->[-1,1]\)
- \(z:[-n,-f]->[-1,1]\)
相机坐标系定义在右手坐标系,NDC是左手坐标系,所以相机朝着-Z的方向看去,而NDC朝着+Z的方向看去。因为glFrustum()
裁剪面的参数必须为正数,所以在创建投影矩阵的时候,我们要对其进行去取反。
ps.glFrustum是opengl类库中的函数,它是将当前矩阵与一个透视矩阵相乘,把当前矩阵转变成透视矩阵,在使用它之前,通常会先调用glMatrixMode(GL_PROJECTION).
void glFrustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble nearVal, GLdouble farVal)
,left,right指明相对于垂直平面的左右坐标位置,bottom,top指明相对于水平剪切面的下上位置,nearVal,farVal指明相对于深度剪切面的远近的距离,两个必须为正数。
在OpenGL中,1个3D的点将会被投影到近裁剪平面上,下图展示了点\((x_e,y_e,z_e)\)如何投影到\((x_p,y_p,z_p)\)。
在视锥体的顶视图,我们可以利用相似三角形计算\(x_p\)的值
x_p = \frac{-nx_e}{z_e}=\frac{nx_e}{-z_e}
\]
同理,在侧视图中,利用相似三角形计算\(y_p\)的值
y_p = \frac{-ny_e}{z_e}=\frac{ny_e}{-z_e}
\]
我们观察到\(x_p,y_p\)都依赖于\(z_e\),他们都除以\(z_e\),这是第一个线索,来帮助我们构建透视投影矩阵。当相机坐标系经过透视投影矩阵变换后,得到的是裁剪坐标系的齐次坐标,最后通过除以齐次坐标的\(w_c\),来得到NDC
x_c\\
y_c\\
z_c\\
w_c
\end{bmatrix}
=M_{projection}
\begin{bmatrix}
x_e\\
y_e\\
z_e\\
w_e
\end{bmatrix}
,
\begin{bmatrix}
x_n\\
y_n\\
z_n\\
\end{bmatrix}
=
\begin{bmatrix}
x_c/w_c\\
y_c/w_c\\
z_c/w_c\\
\end{bmatrix}
\]
因此我们可以设置\(w_c\)的值为\(-z_e\),现在投影矩阵看起来是
x_c\\
y_c\\
z_c\\
w_c
\end{bmatrix}
=
\begin{bmatrix}
.&.&.&.\\
.&.&.&.\\
.&.&.&.\\
0&0&-1&0\\
\end{bmatrix}
\begin{bmatrix}
x_e\\
y_e\\
z_e\\
w_e
\end{bmatrix}
\]
接着,我们需要将\(x_p,y_p\)映射到\(x_n,y_n\),\([l,r]->[-1,1],[b,t]->[-1,1]\)。
相当于是给定l,我要得到-1,给定r,我要得到1,这不就是给定二维平面上的两个点,求其直线方程的问题。
带入点(r,1),1 = \frac{2r}{r-l}+\beta\\
化简求得\beta=-\frac{r+l}{r-l}\\
最终得x_n = \frac{2x_p}{r-l}-\frac{r+l}{r-l}
\]
带入点(t,1),1 = \frac{2t}{t-b}+\beta\\
化简求得\beta=-\frac{t+b}{t-b}\\
最终得y_n = \frac{2y_p}{t-b}-\frac{t+b}{t-b}
\]
现在有了从\(x_e,y_e\)到\(x_p,y_p\)和从\(x_p,y_p\)到\(x_n,y_n\),现在联立一下就可以得到从\(x_e,y_e\)到\(x_n,y_n\)的关系表达式。
x_p = \frac{-nx_e}{z_e}=\frac{nx_e}{-z_e}\\
最终可以化简为(\underbrace{\frac{2n}{r-l}x_e+\frac{r+l}{r-l}z_e}_{x_c})/-z_e
\]
同理
y_p = \frac{-ny_e}{z_e}=\frac{ny_e}{-z_e}\\
最终可以化简为(\underbrace{\frac{2n}{t-b}y_e+\frac{t+b}{t-b}z_e}_{y_c})/-z_e
\]
现在我们的透视矩阵现在是这个样子
x_c\\
y_c\\
z_c\\
w_c
\end{bmatrix}
=
\begin{bmatrix}
\frac{2n}{r-l}&0&\frac{r+l}{r-l}&0\\
0&\frac{2n}{t-b}&\frac{t+b}{t-b}&0\\
.&.&.&.\\
0&0&-1&0\\
\end{bmatrix}
\begin{bmatrix}
x_e\\
y_e\\
z_e\\
w_e
\end{bmatrix}
\]
现在还剩下矩阵的第三行。\(z_n\)和其他两个轴的坐标稍有不同,因为\(z_e\)总是投影到-n的近裁剪面,但是我们需要不同的z值来进行裁剪和深度测试,另外我们应该可以进行逆操作(逆变换)。因为我们知道z的值不依赖于x,y,我们借用w的值来寻找\(z_n,z_e\)之间的关系,因此我们指定第三行矩阵为
x_c\\
y_c\\
z_c\\
w_c
\end{bmatrix}
=
\begin{bmatrix}
\frac{2n}{r-l}&0&\frac{r+l}{r-l}&0\\
0&\frac{2n}{t-b}&\frac{t+b}{t-b}&0\\
0&0&A&B\\
0&0&-1&0\\
\end{bmatrix}
\begin{bmatrix}
x_e\\
y_e\\
z_e\\
w_e
\end{bmatrix}
\]
\]
在相机坐标系中,\(w_e\)的值是1,因此有\(z_n = \frac{Az_e+B}{-z_e}\),为了获得A和B的值,我们使用\((z_e,z_n)\)的关系,\((-n,-1),(-f,1)\),然后将他们代入表达式。
\frac{-Af+B}{f}=1
\]
联立,这是一个简单二元一次方程组,容易求得
B = -\frac{2fn}{f-n}
\]
所以最终得到
\]
最终整个投影矩阵的表达式为
x_c\\
y_c\\
z_c\\
w_c
\end{bmatrix}
=
\begin{bmatrix}
\frac{2n}{r-l}&0&\frac{r+l}{r-l}&0\\
0&\frac{2n}{t-b}&\frac{t+b}{t-b}&0\\
0&0&-\frac{f+n}{f-n}&-\frac{2fn}{f-n}\\
0&0&-1&0\\
\end{bmatrix}
\begin{bmatrix}
x_e\\
y_e\\
z_e\\
w_e
\end{bmatrix}
\]
这个投影矩阵是一般的视锥体,如果是对称的话,有\(r=-l,t=-b\),那么有
t+b=0,t-b=2t(height)
\]
最后矩阵可以简单的化为
\frac{n}{r}&0&0&0\\
0&\frac{n}{t}&0&0\\
0&0&-\frac{f+n}{f-n}&-\frac{2fn}{f-n}\\
0&0&-1&0\\
\end{bmatrix}
\]
注意观察\(z_e,z_n\)的关系式,这是一个非线性的反比例函数,这意味着,在近裁剪平面的是很好,精度很高,而在远裁剪面的时候,精度很低。当\([-n,-f]\)很大时,可能导致深度精度问题(z-fighting),一个较小的\(z_e\)的变化,在远裁剪面可能不会影响\(z_n\)的值,n和f之间的距离应该短一些,从而最小化这个问题。
ps.因为浮点数会存在精度问题,毕竟计算机的存储是离散的。
3.正交投影
正交投影的要比透视投影简单许多,\(x_e,y_e,z_e\)相机坐标系将会线性映射到NDC坐标系。我们仅需要将长方体变为正方体,然后移动至原点。
代入(r,1),最终可得\\
x_n = \frac{2}{r-l}x_e-\frac{r+l}{r-l}
\]
同理
代入(t,1),最终可得\\
y_n = \frac{2}{t-b}y_e-\frac{t+b}{t-b}
\]
同理
代入(-f,1),最终可得\\
z_n = \frac{-2}{f-n}z_e-\frac{f+n}{f-n}
\]
因为w的值在正交投影中不必要,所以我们设置为1,因此正交投影矩阵为
\begin{bmatrix}
\frac{2}{r-l}&0&0&-\frac{r+l}{r-l}\\
0&\frac{2}{t-b}&0&-\frac{t+b}{t-b}\\
0&0&-\frac{2}{f-n}&-\frac{f+n}{f-n}\\
0&0&0&1\\
\end{bmatrix}
\]
同透视投影一样,如果是对称的话,那么就可以矩阵就可以变简单
\begin{bmatrix}
\frac{1}{r}&0&0&0\\
0&\frac{1}{t}&0&0\\
0&0&-\frac{2}{f-n}&-\frac{f+n}{f-n}\\
0&0&0&1\\
\end{bmatrix}
\]
[OpenGL](翻译+补充)投影矩阵的推导的更多相关文章
- (转)投影矩阵的推导(Deriving Projection Matrices)
转自:http://blog.csdn.net/gggg_ggg/article/details/45969499 本文乃<投影矩阵的推导>译文,原文地址为: http://www.cod ...
- OpenGL中投影矩阵的推导
本文主要是对红宝书(第八版)第五章中给出的透视投影矩阵和正交投影矩阵做一个简单推导.投影矩阵的目的是:原始点P(x,y,z)对应后投影点P'(x',y',z')满足x',y',z'∈[-1,1]. 一 ...
- OpenGL 模型视图投影矩阵 仿射矩阵
矩阵基础知识 要对矩阵进行运算,必须先要了解矩阵的计算公式,这个知识的内容涉及到了线性代数. 我们知道在Cocos2dx中,有关于平移,旋转,缩放等等操作,都必须要进行矩阵的乘法. 只需要一张图就能理 ...
- OpenGL中的投影使用
OpenGL中的投影使用 在OpenGL中,投影矩阵指定了可视区域的大小和形状.对于正投影与透视投影这两种不同的投影类型,它们分别有各自的用途. 正投影 它适用于2D图形,如文本.建筑画图等.在它的应 ...
- 【脚下生根】之深度探索安卓OpenGL投影矩阵
世界变化真快,前段时间windows开发技术热还在如火如荼,web技术就开始来势汹汹,正当web呈现欣欣向荣之际,安卓小机器人,咬过一口的苹果,winPhone开发平台又如闪电般划破了混沌的web世界 ...
- 【转】d3d的投影矩阵推导
原帖地址:http://blog.csdn.net/popy007/article/details/4091967 上一篇文章中我们讨论了透视投影变换的原理,分析了OpenGL所使用的透视投影矩阵的生 ...
- 关于Opengl投影矩阵
读 http://www.songho.ca/opengl/gl_projectionmatrix.html 0.投影矩阵的功能: 将眼睛空间中的坐标点 [图A的视椎体] 映射到 一个 ...
- OpenGL投影矩阵(Projection Matrix)构造方法
(翻译,图片也来自原文) 一.概述 绝大部分计算机的显示器是二维的(a 2D surface).在OpenGL中一个3D场景需要被投影到屏幕上成为一个2D图像(image).这称为投影变换(参见这或这 ...
- OpenGL投影矩阵
概述 透视投影 正交投影 概述 计算机显示器是一个2D平面.OpenGL渲染的3D场景必须以2D图像方式投影到计算机屏幕上.GL_PROJECTION矩阵用于该投影变换.首先,它将所有定点数据从观察坐 ...
随机推荐
- React 中使用sass
npm install node-sass-chokidar --save-dev package.json添加两行: "scripts": { 2 "build-css ...
- Blazor WebAssembly 船新项目下载量测试 , 仅供参考.
前言: 昨天 Blazor WebAssembly 3.2 正式发布了. 更新 VS2019后就能直接使用. 新建了两个PWA项目, 一个不用asp.net core (静态部署), 一个使用as ...
- SecureCRT VBscript连接指定端口和波特率
crt.Session.Connect "/Serial COM2 /BAUD 38400" 其它可用选项参考: crt.session.connect options https ...
- HDU2819
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2819 题目大意: 给出一个N*N的0/1矩阵,只能交换整行或者整列,问最少交换多少次可以变成一个主对角 ...
- SpringBoot瘦身
1.介绍 本教程中,我们将研究如何使用spring-boot-thin-launcher项目来将Spring Boot项目瘦身. Spring Boot出了名的把所有依赖打包成单个可执行的Fat JA ...
- Java——日期获取和日期格式化
import java.text.ParseException; import java.text.SimpleDateFormat; import java.util.Calendar; impor ...
- 初识Mysql 外键
1.创建学生表(主表) CREATE TABLE `stu` ( `stunum` int(10) NOT NULL AUTO_INCREMENT, `name` varchar(255) NOT N ...
- [ES6系列-02]Arrow Function:Whats this?(箭头函数及它的this及其它)
[原创] 码路工人 大家好,这里是码路工人有力量,我是码路工人,你们是力量. 如果没用过CSharp的lambda 表达式,也没有了解过ES6,那第一眼看到这样代码什么感觉? /* eg.0 * fu ...
- 自定义cursor鼠标 图片
1.CSS3自定义鼠标样式 最近想要使用自定义鼠标样式,看了cursor的样式不好看,就想到cursor属性能不能自定义图片,翻看了下CSS3文档,发现是可以的 格式为:cursor:url('图片u ...
- [COCOS2DX-LUA]0-005.cocos2dx中关于全面屏和折叠屏的适配的一些见解
1.随着科技的发展,我们可以看到从iphoneX的刘海屏开始,引发了各种全面屏和异形屏的出现.这是科技的进步,但是对于各大的应用厂商来说,苦不堪言. 2.当然 ,吐槽归吐槽,我们还是要理智的去对待这个 ...