题目背景

忙完了学校的事,v神终于可以做他的“正事”:陪女朋友散步。一天,他和女朋友走着走着,不知不觉就来到了一个千里无烟的地方。v神正要往回走,如发现了一块牌子,牌子上有有一行小字和一张图,小字说道:“找到图上最大的交错正方形之后和我联系,这块地就是你的了。”在房价疯长的年代,v神当然不愿错过这个机会,于是开始找了起来……以v神的能力当然找不出来了,你能帮v神找出来吗?

题目描述

图上有一个矩阵,由N*M个格子组成,这些格子由两种颜色构成,黑色和白色。请找到面积最大的且内部是黑白交错(即两个相连的正方形颜色不能相同)的正方形。

输入格式:

第一行两个整数N和M,分别表示行数和列数。接下来有N行,每行M个数,0或1分别表示这个格子是黑色或白色。

输出格式:

仅有一行,表示满足条件最大正方形的 边长

样例

INPUT

3 3

0 1 0

1 0 0

1 1 1

OUTPUT

2

HINT

样例解释:

(1,1)到(2,2)这个正方形是满足条件的,它的边长是2

数据范围约定:

对于30%的数据,\(N\leq20\)

对于60%的数据,\(N\leq300\)

对于100%的数据,\(N\leq1500\)

SOLUTION

题解:dp

一看数据范围就知道是\(O(n^2)\)的算法,再说了这题如果要暴力的话最暴力的可以达到\(O(n^6)\)之高。(有没有其他暴力我不知道qwq)

所以考虑通过题目的性质进行优化。

根据题意,正方形的合法与否在于相邻格子之间关系的合法与否。所以我们可以先处理左右之间关系,在处理上下之间的关系。这里就可以用\(lft[i][j],rgt[i][j]\)数组在同一层扫一遍时维护一下第\(i\)行\(j\)个格子最左/右可以延伸到哪一格,这里注意一下维护顺序,\(lft[][]\)数组是从左到右,而\(rgt[][]\)是从右到左。

然后处理上下层之间的关系就可以直接进行层与层之间的转移了

\[lft[i][j]=max(lft[i][j],lft[i-1][j])
\]

\[rgt[i][j]=min(rgt[i][j],rgt[i-1][j])
\]

\[hgt[i][j]=hgt[i-1][j]+1
\]

这个\(hgt\)指的是高度(纵向长度)

然后维护过程中顺带记录一下最大值就可以了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std;
const int N=1510;
int n,m,hgt[N][N],sq[N][N],lft[N][N],rgt[N][N];
int main(){
int i,j;
scanf("%d%d",&n,&m);
for (i=1;i<=n;++i)
for (j=1;j<=m;++j){
scanf("%d",&sq[i][j]);
lft[i][j]=j;rgt[i][j]=j;hgt[i][j]=1;
}
for (i=1;i<=n;++i)
for (j=2;j<=m;++j)
if (sq[i][j]^sq[i][j-1]) lft[i][j]=lft[i][j-1];
for (i=1;i<=n;++i)
for (j=m-1;j>=1;--j)
if (sq[i][j]^sq[i][j+1]) rgt[i][j]=rgt[i][j+1];
int ans=0;
for (i=1;i<=n;++i)
for (j=2;j<=m;++j){
if (i>1&&(sq[i][j]^sq[i-1][j])){
lft[i][j]=max(lft[i][j],lft[i-1][j]);
rgt[i][j]=min(rgt[i][j],rgt[i-1][j]);
hgt[i][j]=hgt[i-1][j]+1;
}
int a=min(rgt[i][j]-lft[i][j]+1,hgt[i][j]);
ans=max(ans,a);
}
printf("%d\n",ans);
return 0;
}

Luogu1681_ 最大正方形II的更多相关文章

  1. 洛谷P1681 最大正方形II

    P1681 最大正方形II 题目背景 忙完了学校的事,v神终于可以做他的“正事”:陪女朋友散步.一天,他和女朋友走着走着,不知不觉就来到 了一个千里无烟的地方.v神正要往回走,如发现了一块牌子,牌子上 ...

  2. [洛谷1681]最大正方形II

    思路:对于矩阵中的每一个元素,处理出它能扩展到的上边界$up$.左边界$left$,DP得出以该元素为右下角的最大正方形.状态转移方程:$f_{i,j}=min(f_{i-1,j-1},up_{i,j ...

  3. P1681 最大正方形II (动态规划)

    题目背景 忙完了学校的事,v神终于可以做他的"正事":陪女朋友散步.一天,他和女朋友走着走着,不知不觉就来到了一个千里无烟的地方.v神正要往回走,如发现了一块牌子,牌子上有有一行小 ...

  4. [ZJOI2007]棋盘制作 (单调栈,动态规划)

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个 8 \times 88×8 大小的黑白相间的方阵,对应八八六十四卦, ...

  5. 【DP入门到入土】

    DP例题较多,可以根据自己需求食用~ update:下翻有状压DP入门讲解,也只有讲解了(逃~ DP的实质,就是状态的枚举. 一般用DP解决的问题,都是求计数或最优问题,所以这类问题,我们也可以用搜索 ...

  6. P1681 最大正方形 Iand II

    题目描述 在一个n*m的只包含0和1的矩阵里找出一个不包含0的最大正方形,输出边长. 输入输出格式 输入格式: 输入文件第一行为两个整数n,m(1<=n,m<=100),接下来n行,每行m ...

  7. HDU 4739 求正方形个数

    九野的博客,转载请注明出处:http://blog.csdn.net/acmmmm/article/details/11711707 求所有可能围成的正方形,借个代码 #include <que ...

  8. matlab-霍夫变换详解(判断正方形长方形)

    霍夫变换 霍夫变换是1972年提出来的,最开始就是用来在图像中过检测直线,后来扩展能检测圆.曲线等. 直线的霍夫变换就是 把xy空间的直线 换成成 另一空间的点.就是直线和点的互换. 我们在初中数学中 ...

  9. leetcode Ch2-Dynamic Programming II

    一. Longest Valid Parentheses 方法一.一维DP class Solution { public: int longestValidParentheses(string s) ...

随机推荐

  1. flask web实战1.27

    1.在pycharm的terminal中输入 生成requirements.txt文件 pip freeze > requirements.txt 安装requirements.txt依赖 pi ...

  2. CSP模拟赛游记

    时间:2019.10.5 考试时间:100分钟(连正式考试时间的一半还没有到)题目:由于某些原因不能公开. 由于第一次接触NOIinux系统所以连怎么建文件夹,调字体,如何编译都不知道,考试的前半小时 ...

  3. 洛谷 P3808 【模板】AC自动机(简单版)

    传送门:https://www.luogu.org/problem/P3808 题解:是一个AC自动机的裸题了,注释加在代码里面了 #include<bits/stdc++.h> usin ...

  4. requset请求处理与BeanUtils封装

    HTTP: 概念:Hyper Text Transfer Protocol 超文本传输协议 传输协议:定义了,客户端和服务器端通信时,发送数据的格式 特点: 基于TCP/IP的高级协议 默认端口号:8 ...

  5. screen模式下鼠标无法滚动【问题】

    忍了很久, 终于查到原因了. 回滚模式: CTRL+A (释放), [ 切换模式: CTRL+ C 参考: https://serverfault.com/questions/206303/how-t ...

  6. [Algo] 253. Longest Substring Without Repeating Characters

    Given a string, find the longest substring without any repeating characters and return the length of ...

  7. Kubernetes系列二: 使用kubeadm安装k8s环境

    环境 三台主机,一台master,两台node 作为master 作为node节点 作为node节点 每台主机Centos版本使用 CentOS Linux release 7.6.1810 (Cor ...

  8. Linux_打包文件

    将多个文件打包成一个大文件,用tar命令 tar是将多个文件前后连接在一起,tar并不对文件进行压缩 tar -cf  要创建的打包文件名(最后加上.tar)  要打包的文件/列表      c代表创 ...

  9. 吴裕雄--天生自然C语言开发:数据类型

    #include <stdio.h> #include <limits.h> int main() { printf("int 存储大小 : %lu \n" ...

  10. 《走出软件作坊》//TODO

    目录 简介 结束语 简介 作者吕建伟(@阿朱),研发管理专家,原京东技术学院院长,中国互联网技术联盟发起人,历任首席架构师.技术总监以及CTO等职位.目前已接受用友集团董事长王文京邀请,加入用友组建研 ...