classification.py
# -*- coding: utf-8 -*-
"""
View more, visit my tutorial page: https://morvanzhou.github.io/tutorials/
My Youtube Channel: https://www.youtube.com/user/MorvanZhou
Dependencies:
torch: 0.4
matplotlib
""" import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt # torch.manual_seed(1) # reproducible # make fake data
n_data = torch.ones(100, 2)
#正太分布均值和标准差
x0 = torch.normal(2*n_data, 1) # class0 x data (tensor), shape=(100, 2)
y0 = torch.zeros(100) # class0 y data (tensor), shape=(100, 1)
#正太分布均值和标准差
x1 = torch.normal(-2*n_data, 1) # class1 x data (tensor), shape=(100, 2)
y1 = torch.ones(100) # class1 y data (tensor), shape=(100, 1)
x = torch.cat((x0, x1), 0).type(torch.FloatTensor) # shape (200, 2) FloatTensor = 32-bit floating
y = torch.cat((y0, y1), ).type(torch.LongTensor) # shape (200,) LongTensor = 64-bit integer # The code below is deprecated in Pytorch 0.4. Now, autograd directly supports tensors
# x, y = Variable(x), Variable(y) # plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn')
# plt.show() #第一种方法
class Net(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(n_feature, n_hidden) # hidden layer
self.out = torch.nn.Linear(n_hidden, n_output) # output layer def forward(self, x):
x = F.relu(self.hidden(x)) # activation function for hidden layer
x = self.out(x)
return x net = Net(n_feature=2, n_hidden=10, n_output=2) # define the network
print(net) # net architecture #第二种方法
net=torch.nn.Sequential(
torch.nn.Linear(2,10),
torch.nn.ReLU(),
torch.nn.Linear(10,2)
)
print(net)
optimizer = torch.optim.SGD(net.parameters(), lr=0.02)
loss_func = torch.nn.CrossEntropyLoss() # the target label is NOT an one-hotted plt.ion() # something about plotting for t in range(100):
out = net(x) # input x and predict based on x
loss = loss_func(out, y) # must be (1. nn output, 2. target), the target label is NOT one-hotted optimizer.zero_grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients if t % 2 == 0:
# plot and show learning process
plt.cla()
prediction = torch.max(out, 1)[1]
pred_y = prediction.data.numpy()
target_y = y.data.numpy()
plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn')
accuracy = float((pred_y == target_y).astype(int).sum()) / float(target_y.size)
plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color': 'red'})
plt.pause(0.1) plt.ioff()
plt.show()
classification.py的更多相关文章
- Sklearn中二分类问题的交叉熵计算
二分类问题的交叉熵 在二分类问题中,损失函数(loss function)为交叉熵(cross entropy)损失函数.对于样本点(x,y)来说,y是真实的标签,在二分类问题中,其取值只可能为集 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- python MLP 神经网络使用 MinMaxScaler 没有 StandardScaler效果好
MLP 64,2 preprocessing.MinMaxScaler().fit(X) test confusion_matrix:[[ ...
- 菜鸟之路——机器学习之BP神经网络个人理解及Python实现
关键词: 输入层(Input layer).隐藏层(Hidden layer).输出层(Output layer) 理论上如果有足够多的隐藏层和足够大的训练集,神经网络可以模拟出任何方程.隐藏层多的时 ...
- sklearn中的数据预处理----good!! 标准化 归一化 在何时使用
RESCALING attribute data to values to scale the range in [0, 1] or [−1, 1] is useful for the optimiz ...
- [Example of Sklearn] - Example
reference : http://my.oschina.net/u/175377/blog/84420 目录[-] Scikit Learn: 在python中机器学习 载入示例数据 一个改变数据 ...
- pointnet++之classification/train.py
1.数据集加载 if FLAGS.normal: assert(NUM_POINT<=10000) DATA_PATH = os.path.join(ROOT_DIR, 'data/modeln ...
- 【转】Windows下使用libsvm中的grid.py和easy.py进行参数调优
libsvm中有进行参数调优的工具grid.py和easy.py可以使用,这些工具可以帮助我们选择更好的参数,减少自己参数选优带来的烦扰. 所需工具:libsvm.gnuplot 本机环境:Windo ...
- Libsvm:脚本(subset.py、grid.py、checkdata.py) | MATLAB/OCTAVE interface | Python interface
1.脚本 This directory includes some useful codes: 1. subset selection tools. (子集抽取工具) subset.py 2. par ...
随机推荐
- linux之 文本编辑 的基础知识点
第一步 打开终端 创建文件命令 touch 文件名.后缀名 打开文件命令 vi 文件名.后缀名 (此时进去txt文件之后为一般模式,你无法对文件进行增删改) 之后按 i 或 a 或o 都 ...
- 吴裕雄 Bootstrap 前端框架开发——Bootstrap 字体图标(Glyphicons):glyphicon glyphicon-tint
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...
- C++ createprocess 打开word
#define FileName _TEXT("E:\\DuplicateHandle伪句柄与实句柄的应用.docx") void CMFCApplication1Dlg::OnB ...
- JS ~ Promise 对象
Promise 对象用于表示一个异步操作的最终状态(完成或失败),以及该异步操作的结果值. Promise.all(iterable) 这个方法返回一个新的promise对象,该promise对象在i ...
- CSS根据屏幕分辨率宽度自动适应的办法
CSS根据屏幕分辨率宽度自动适应的办法 第一种办法是js选择CSS <SCRIPT language=JavaScript><!-- Beginif (screen.width == ...
- cf 261B.Maxim and Restaurant
什么什么期望的,不会! (题解http://blog.sina.com.cn/s/blog_140e100580102wj4e.html(看不懂)) #include<bits/stdc++.h ...
- TP多条件查询实例
where条件查询,时间范围查询 $condition = [ ['member_id', '=', $member_id] ]; if($type) { $condition[] = ['type' ...
- C#类、对象、方法和属性详解
C#类.对象.方法和属性详解 一.相关概念: 1.对象:现实世界中的实体(世间万物皆对象) 2.类:具有相似属性和方法的对象的集合 3.面向对象程序设计的特点:封装 继承 多态 4.对象的三要素:属性 ...
- 51nod 1393:0和1相等串
1393 0和1相等串 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注 给定一个0-1串,请找到一个尽可能长的子串,其中包含的0与1的个数相等. I ...
- Spring的配置文件说明
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...