pytorch中tensor张量数据基础入门
pytorch张量数据类型入门
1、对于pytorch的深度学习框架,其基本的数据类型属于张量数据类型,即Tensor数据类型,对于python里面的int,float,int array,flaot array对应于pytorch里面即在前面加一个Tensor即可——intTensor ,Float tensor,IntTensor of size [d1,d2...], FloatTensor of size[d1,d2,...]
2、对于pytorch,并不能表示string类型的数据类型,一般情况下,可以将其数据分类的string结果进行编码表示,将其编码为一个向量的数据类型[d1,d2...dn],这个方法将其称为One-hot的编码表示方法。其中,n为数据分类结果的类别数目,即表示向量的总长度。例如:对于数据进行分类的时候,其实现的功能是区分猫和狗,一共含有两个数据分类结果,因此可以将其结果的类别进行编码表示为[0,1]猫和[1,0]狗
3、对于pytorch里面的数据进行数据类型判断和输出时,一般有三种方法:
(1)print(a.type):输出数据a的详细数据类型;
(2)print(type(a)):输出数据a的基本数据类型,没有(1)中那么详尽;
(3)print(isinstance(a,torch.FloatTensor)):用来输出数据a是否为torch.Tensor数据类型,即返回值为True或者False.
4、对于pytorch的张量Tensor数据类型,在不同的平台上是不一样的,如果在CPU上即为正常的张量Tensor数据类型,如果在GPU上面,则需要将其数据类型转换:
data=data.cuda(),此时data的数据类型从torch.FlaotTensor转换为了torch.cuda.FloatTensor,它可以在cuda上面进行算法的加速实现。
5、对于pytorch里面的标量数据a,进行相关的数据定义时,一般将其定义为torch.tensor(a),则输出时返回为tensor(a)
6、对于标量的数据类型,其数据shape输出一般为a.shape=tensor.size([]),对于其长度输出len(a.shape)=0,另外,对于a.size也是等于tensor.size([])的。
7、对于pytorch里面的任何一个张量数据torch.tensor([d1,d2,d3,d4])DIM和size以及shape三种数据属性的含义解析与区分如下:
DIM是指张量数据的长度(即数据的层数)=len(a.shape),size和shape都是指张量数据的形状;
另外,a.numel()是指数据的大小为d1*d2*d3*d4
(1)DIM=2:
a=torch.tensor([4,784])
其中4是指数据图片的数目,而784是指每一张图片的特征维度
举例:对于a=torch.tensor([1,2,3])
适用于普通的机器学习数据
(2)DIM=3:
1)a.size/shape=tensor.size([1,2,3])
2)a.size(0)=1
3)a.shape[2]=3
4)a[0].shape=[2,3]
适用于RNN神经网络的数据类型[length,num,feature]
例如,对于RNN神经网络进行语音识别与处理时[10,20,100]表示:每个单词包含100个特征,一句话一共有10个单词,而每次输20句话
(3)DIM=4:
一般适用于CNN卷积神经网络[b,c,h,w]:图像处理中图片的信息
torch.tensor([2,3,28,28]):
1)2是指每次输入的图片的个数
2)3是指每张图片的基本特征通道类型
3)28,28是指每张图片的像素特征:长和宽
8、创建Tensor数据的方法主要有以下几种:
(1)Import from numpy:
a=np.array([1.1,2.1)
b=torch.from_numpy(a)
a=np.ones([2,3]) #定义矩阵的方式
b=torch.from_numpy(a)
注:从numpy中导入的数据float类型其实是double类型的。
(2)Import from List:
a=torch.tensor([[1.1,2.1],[1.5,1.2]]),这里的小写tensor中的list数据就是指data本身数据
b=torch.FloatTensor/Tensor(d1,d2,d3),这里的大写Tensor中为数据的shape,即数据的维度组成
9、生成未初始化的数据uninitialized:
(1)torch.empty()
(2)torch.FloatTensor(d1,d2,d3)
(3)torch.IntTensor(d1,d2,d3)
10、tensor数据的随机初始化的方式—rand/rand_like(0-1),randint(整数数据类型),randn(正态分布数据):
(1)torch.rand():产生0-1之间的数据
(2)torch.rand_like(a):a为一个tensor数据类型,产生一个和a数据shape相同的随机tensor数据类型
(3)torch.randint(min,max,[d1,d2,d3]):产生一个shape类型为[d1,d2,d3]的tensor数据,数据最小和最大分别为min和max
(4)torch.randn:产生一个正态分布的数据类型N(0,1),对于自定义的正态分布的数据N(mean,std),一般需要用到torch.normal()函数,一般需要两步步骤进行,其具体的用法如下举例所示:
a=torch.normal(mean=torch.full([10],0)),std=torch.arange(1,0,-0.1))
b=a.reshape(2,5)
11、生成一个全部填充相同的数据:torch.full([d1,d2,de3],a)其中填充数据为a
12、递增或者递减函数API:arange/range
torch.arange(min,max,distance):左闭右开区间,不包含最大值
torch。range(min,max,distance):全闭区间,包含最大值,不推荐使用
13、linspace/logspace:线性空间
(1)torch.linspace(min,max,steps=data number):返回的是等间距的数据,其中左右数据均包括,数据个数为steps,数据间隔为(max-min)/(steps-1)
(2)torch.logspace(min,max,steps=data number):返回的是10的各个线性空间次方的数值
14、torch中一些零、一和单位张量数据生成API:
torch.zeros(3,4) #零张量数据
torch.ones(3,4) #1张量数据
torch.eye(4,5) #单位张量数据
15、randperm:主要是产生随机的索引值:
torch.randperm(10):在[0,10),即0-9产生随机的10个索引
综上所示,对于tensor张量数据类型的基础训练python代码如下所示:
import torch
a=torch.randn([1,2,3,4])
print(a)
print(a.dim()) #输出张量数据的层数,即长度
print(a.dim()==len(a.shape))
print(a.numel()) #输出张量数据的总个数,即数据大小,占内存的个数
print(a.shape) #输出数据的形状
print(a.size())
print(a.size(3)) #输出size和shape的其中元素
print(a.shape[3])
x=torch.empty(2,2,3)
print(x)
print(torch.IntTensor(2,3))
print(torch.FloatTensor(1,2,3))
print(torch.Tensor(1,2,10)) #未初始化tensor数据,占据一定的内存区间
print(x.type()) #输出tensor数据类型
#torch.set_default_tensor_type(torch.DoubleTensor) #设置tensor的数据类型为doubletensor
x=torch.empty(2,2,3)
print(x)
print(x.type()) #重新输出tensor数据类型
#随机初始化的方式
a=torch.rand(3,3) #产生0-1的shape为[3,3]的tensor数据
print(a)
b=torch.rand_like(a) #产生一个和a的tensor数据类型相同的tensor数据,其数据大小也在0-1之间,如果变大可以利用一定的数据处理
print(b)
c=torch.randint(0,10,[3,5])
print(c)
a=torch.randn(2,5) #产生一个标准正态分布的数据
print(a)
a=torch.normal(mean=torch.full([10],0),std=torch.arange(1,0,-0.1)) #产生一般自定义的正态分布数据大小
b=a.reshape(2,5)
print(a)
print(b)
#torch.full
a=torch.full([2,3],3)
print(a)
b=torch.full([],1) #生成一个标量
print(b)
c=torch.full([1],1) #生成一个dim=1的tensor张量数据
print(c)
print(a.type(),b.type(),c.type())
a=torch.arange(0,10,2) #半开区间,左闭右开,不包含右边的最大值
print(a)
b=torch.range(0,10) #包含右端数据10,全闭区间
print(b)
#linspace/logspace
#(1)torch.linspace(min,max,steps=data number):返回的是等间距的数据,其中左右数据均包括,数据个数为steps,数据间隔为(max-min)/(steps-1)
#(2)torch.logspace(min,max,steps=data number):返回的是10的各个线性空间次方的数值
a=torch.linspace(0,10,steps=10)
print(a)
b=torch.linspace(0,10,steps=11)
print(b)
c=torch.logspace(0,10,steps=11)
print(c)
d=torch.logspace(-1,0,steps=10)
print(d)
#Ones/zeros/eyes
print(torch.zeros(3,4)) #零张量数据
print(torch.ones(3,4)) #1张量数据
print(torch.eye(4,5)) #单位张量数据
#randperm产生随机的索引值
a=torch.rand(2,3)
b=torch.rand(2,2)
print(a,b)
idx=torch.randperm(2)
print(idx)
a=a[idx]
b=b[idx]
print(a,b)
最终实现结果如下所示:
pytorch中tensor张量数据基础入门的更多相关文章
- pytorch中tensor张量的创建
import torch import numpy as np print(torch.tensor([1,2,3])) print(torch.tensor(np.arange(15).reshap ...
- pytorch中tensor数据和numpy数据转换中注意的一个问题
转载自:(pytorch中tensor数据和numpy数据转换中注意的一个问题)[https://blog.csdn.net/nihate/article/details/82791277] 在pyt ...
- 对pytorch中Tensor的剖析
不是python层面Tensor的剖析,是C层面的剖析. 看pytorch下lib库中的TH好一阵子了,TH也是torch7下面的一个重要的库. 可以在torch的github上看到相关文档.看了半天 ...
- [Pytorch]Pytorch中tensor常用语法
原文地址:https://zhuanlan.zhihu.com/p/31494491 上次我总结了在PyTorch中建立随机数Tensor的多种方法的区别. 这次我把常用的Tensor的数学运算总结到 ...
- VS2013中Python学习笔记[基础入门]
前言 在上一节中简单的介绍了在VS2013中如何进行开发Hello World,在VS2013中进行搭建了环境http://www.cnblogs.com/aehyok/p/3986168.html. ...
- Pytorch 中 tensor的维度拼接
torch.stack() 和 torch.cat() 都可以按照指定的维度进行拼接,但是两者也有区别,torch.satck() 是增加新的维度进行堆叠,即其维度拼接后会增加一个维度:而torch. ...
- pytorch中tensor的属性 类型转换 形状变换 转置 最大值
import torch import numpy as np a = torch.tensor([[[1]]]) #只有一个数据的时候,获取其数值 print(a.item()) #tensor转化 ...
- PyTorch 数据集类 和 数据加载类 的一些尝试
最近在学习PyTorch, 但是对里面的数据类和数据加载类比较迷糊,可能是封装的太好大部分情况下是不需要有什么自己的操作的,不过偶然遇到一些自己导入的数据时就会遇到一些问题,因此自己对此做了一些小实 ...
- pytorch张量数据索引切片与维度变换操作大全(非常全)
(1-1)pytorch张量数据的索引与切片操作1.对于张量数据的索引操作主要有以下几种方式:a=torch.rand(4,3,28,28):DIM=4的张量数据a(1)a[:2]:取第一个维度的前2 ...
随机推荐
- java 实现一段文字中,出现次数最多的字
代码如下: public static void main(String[] args) { String str = "大批量,之前都没怎么注意过,这个问题确实不会,网上参考了下别人的,大 ...
- contextField 键盘只允许输入数字和小数点,并且现在小数点后位数
- (BOOL)textField:(UITextField *)textField shouldChangeCharactersInRange:(NSRange)range replacementS ...
- http的长连接和短连接(史上最通俗!)
1.以前的误解 很久之前就听说过长连接的说法,而且还知道HTTP1.0协议不支持长连接,从HTTP1.1协议以后,连接默认都是长连接.但终究觉得对于长连接一直懵懵懂懂的,有种抓不到关键点的感觉. 今天 ...
- JS-apply、call、bind
最近查看了很多关于apply的文章,就随手记录一下. Apply apply: 方法能劫持另外一个对象的方法,继承另外一个对象的属性. Function.apply(obj,args) 方法能接收两个 ...
- 01 认识python
python介绍 python的创始⼈为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决⼼ 开发⼀个新的脚本解释程序,作为ABC语 ...
- C:变量的声明与定义
声明变量不需要建立存储空间,如:extern int a; 定义变量需要建立存储空间,如:int b; #include <stdio.h> int main() { //extern 关 ...
- CSS水平垂直居中常见方法总结2
1.文本水平居中line-height,text-align:center(文字)元素水平居中 margin:0 auo 方案1:position 元素已知宽度 父元素设置为:position: re ...
- 小程序云函数调用http或https请求外部数据
参考网址 https://blog.csdn.net/qiushi_1990/article/details/101220920 小程序云函数调用http或https请求外部数据 原创编程小石头 发布 ...
- mysql数据库关系表设计原则
三范式https://blog.csdn.net/qq_36432666/article/details/78934073 https://kb.cnblogs.com/page/138526/ ht ...
- js指定范围指定个数的不重复随机数
今天偶然看到的 比如要生成 1-100范围之内的10个不重复随机数,代码就可以这么写 var arr = []; for (var i = 1; i <=100; i++) { arr.push ...