我是快乐的搬运工: http://gulu-dev.com/post/perf_assist/2016-12-20-unity-coroutine-optimizing#toc_0

------------------------------------------------------------------------ 分割线 ----------------------------------------------------------------------------

目录:

Warm up: 从复用 Yield 对象说起
  Coroutine 的工作原理
  接管和监控 Coroutine 的行为 ◦ 问题描述
  中间层 TrackedCoroutine
  启动函数 InvokeStart()
  监控 Plugins 内的协程

PerfAssist 组件 - CoroutineTracker (on GitHub) ◦ 功能介绍
  常见问题调查

协程 (Coroutine) 是大部分现代编程环境都提供的一个非常有用的机制。它允许我们把不同时刻发生的行为,在代码中以线性的方式聚合起来。与基于事件与回调的系统相比,以协程方式组织的业务逻辑,可读性相对好一些。

Unity 内的协程实现是传统协程的简化——在主线程内每一帧给定的时间点上,引擎通过一定的调度机制来唤醒和执行满足条件的协程,以实际上的分时串行化执行回避了协程之间的通信问题。但由于种种因素,协程的执行情况对程序员而言相对不那么透明,可以通过一些简单的机制来对其进行监控和优化。

Warm up: 从复用 Yield 对象说起

先从一个最简单而直接的改进开始吧。下面一个在每帧结束时执行的协程的例子:

void Start()
{
StartCoroutine(OnEndOfFrame());
} IEnumerator OnEndOfFrame()
{
yield return null; while (true)
{
//Debug.LogFormat("Called on EndOfFrame.");
yield return new WaitForEndOfFrame();
}
}

在 Profiler 内可以看到,上面的代码会导致 WaitForEndOfFrame 对象的每帧分配,给 GC 增加负担。假设游戏内有 10 个活跃协程,运行在 60 fps,那么每秒钟的 GC 增量负担是 10 60 16 = 9.6 KB/s

我们可以简单地通过复用一个全局的 WaitForEndOfFrame 对象来优化掉这个开销:

static WaitForEndOfFrame _endOfFrame = new WaitForEndOfFrame();

在合适的地方创建一个全局共享的 _endOfFrame 之后,只需要把上面的代码改为:

    ...
yield return _endOfFrame;
...

上面的 9.6 KB/s 的 GC 开销就被完全避免了,而逻辑上与优化前完全没有任何区别。

实际上,所有继承自 YieldInstruction 的用于挂起协程的指令类型,都可以使用全局缓存来避免不必要的 GC 负担。常见的有:

    •WaitForSeconds
•WaitForFixedUpdate
•WaitForEndOfFrame

Yielders.cs 这个文件里,集中地创建了上面这些类型的静态对象,使用时可以直接这样:

    ...
yield return Yielders.GetWaitForSeconds(1.0f); // wait for one second
...

Coroutine 的工作原理

观察调用链可知,Unity Coroutine 的调用约定靠返回的 IEnumerator 对象来维系。我们知道 IEnumerator 的核心功能函数是:

bool MoveNext();

这个函数在每次被 Unity 协程调度函数 (通常是协程所在类的 SetupCoroutine()) 唤醒时调用,用于驱动对应的协程由上一次 yield 语句开始执行下面的代码段,直到下一条 yield 语句 (对应返回 true) 或函数退出 (对应返回 false)。

下图是一次典型的协程调用:

图中的绿色实心方块是协程实际的活跃执行时间。可以看出,一个协程的完整生命周期是“在整个生命周期内对其内部所有代码段的一个遍历并依次执行”的过程。

接管和监控 Coroutine 的行为

问题描述

由于以下几点问题的存在,协程的执行情况对开发者而言并不透明,很容易在开发过程中引入性能问题。

  1. 协程 (除了首次执行) 不是在用户的函数内触发,而是在单独的 SetupCoroutine() 内被激活并执行
  2. 协程的每次活跃执行,在代码上以单次 yield 为界限。对于具有复杂分支的业务逻辑,尤其是“本来在主流程内,后来被协程化”的代码,很难看出每一段 yield 的潜在执行量
  3. 实践中,如果同时激活的协程较多,就可能会出现多个高开销的协程挤在同一帧执行导致的卡帧。这一类卡顿难以复现和调查。

中间层 TrackedCoroutine

针对这些情况,我们可以在主流程和协程之间添加一层 Wrapper,来接管和监控实际协程的执行情况。具体地说,可以实现一个纯转发的 IEnumerator,如下的缩减版所示:

public class TrackedCoroutine : IEnumerator
{
IEnumerator _routine; public TrackedCoroutine(IEnumerator routine)
{
_routine = routine; // 在这里标记协程的创建
} object IEnumerator.Current
{
get
{
return _routine.Current;
}
} public bool MoveNext()
{
// 在这里可以:
// 1. 标记协程的执行
// 2. 记录协程本次执行的时间 bool next = _routine.MoveNext(); if (next)
{
// 一次普通的执行
}
else
{
// 协程运行到末尾,已结束
} return next;
} public void Reset()
{
_routine.Reset();
}
}

完整版的代码见 TrackedCoroutine 类的实现。

有了这样一个 TrackedCoroutine 之后,我们就可以把正常的

abc.StartCoroutine(xxx());

替换为

abc.StartCoroutine(new TrackedCoroutine(xxx()));

启动函数 InvokeStart()

RuntimeCoroutineTracker 类中,可以看到以下两个接口,针对以 IEnumeratorstring,及可选的单参形式等三种形式的协程启动的封装。

public class RuntimeCoroutineTracker
{
public static Coroutine InvokeStart(MonoBehaviour initiator, IEnumerator routine);
public static Coroutine InvokeStart(MonoBehaviour initiator, string methodName, object arg = null);
}

上面的外部调用就可以替换为:

RuntimeCoroutineTracker.InvokeStart(abc, xxx());

至此,藉由一个中间层 TrackedCoroutine,我们得以接管和监控所有协程的单次运行过程。

监控 Plugins 内的协程

由于 Plugins 目录单独编译,无法直接调用外部的功能,这里我们为所有的插件提供一个转发机制,用于把插件内启动协程的请求转发到上面的启动函数。

首先定义两个委托:

public delegate Coroutine CoroutineStartHandler_IEnumerator(MonoBehaviour initiator, IEnumerator routine);
public delegate Coroutine CoroutineStartHandler_String(MonoBehaviour initiator, string methodName, object arg = null);

然后把实际的协程请求转发给这两个委托:

public class CoroutinePluginForwarder
{
... public static Coroutine InvokeStart(MonoBehaviour initiator, IEnumerator routine)
{
return InvokeStart_IEnumerator(initiator, routine);
} public static Coroutine InvokeStart(MonoBehaviour initiator, string methodName, object arg = null)
{
return InvokeStart_String(initiator, methodName, arg);
} ...
}

最后在运行时注册两个委托即可:

CoroutinePluginForwarder.InvokeStart_IEnumerator = RuntimeCoroutineTracker.InvokeStart;
CoroutinePluginForwarder.InvokeStart_String = RuntimeCoroutineTracker.InvokeStart;

完整的代码实现见 CoroutinePluginForwarder 类。

PerfAssist 组件 - CoroutineTracker (on GitHub)

在上面这些实现的基础上,前段时间我实现了一个编辑器内的工具面板 CoroutineTracker ,用于帮助开发者监控和分析系统内协程的运行情况。

https://github.com/PerfAssist/PA_CoroutineTracker

功能介绍

左边的四列是程序运行时所有被追踪协程的实时的启动次数,结束次数,执行次数和执行时间。

当点击图形上任何一个位置时,选中该时间点(秒为单位),在图形上是绿色竖条。

此时右边的数据报表刷新为在这一秒中活动的所有协程的列表,如下图所示:

注意,该表中的数据依次为:

  • 协程的完整修饰名 (mangled name)
  • 在选定时间段内的执行次数 (selected execution count)
  • 在选定时间段内的执行时间 (selected execution time)
  • 到该选中时间为止时总的执行次数 (summed execution count)
  • 到该选中时间为止时总的执行时间 (summed execution time)

可以通过表头对每一列的数据进行排序。

当选中列表中某一个协程时,面板的右下角会显示该协程的详细信息,如下图所示:

这里有下面的信息:

  • 该协程的序列 ID (sequence ID)
  • 启动时间 (creation time)
  • 结束时间 (termination time)
  • 启动时堆栈 (creation stacktrace)

向下滚动,可看到该协程的完整执行流程信息,如下图所示:

常见问题调查

使用这个工具,我们可以更方便地调查下面的问题:

  • yield 过于频繁的
  • 单次运行时间太久的
  • 总时间开销太高的
  • 进入死循环,始终未能正确结束掉的
  • 递归 yield 产生过深执行层次的

Unity 协程运行时的监控和优化的更多相关文章

  1. Unity协程(Coroutine)原理深入剖析

    Unity协程(Coroutine)原理深入剖析 By D.S.Qiu 尊重他人的劳动,支持原创,转载请注明出处:http.dsqiu.iteye.com 其实协程并没有那么复杂,网上很多地方都说是多 ...

  2. Unity协程(Coroutine)原理深入剖析(转载)

    记得去年6月份刚开始实习的时候,当时要我写网络层的结构,用到了协程,当时有点懵,完全不知道Unity协程的执行机制是怎么样的,只是知道函数的返回值是IEnumerator类型,函数中使用yield r ...

  3. 深入浅出!从语义角度分析隐藏在Unity协程背后的原理

    Unity的协程使用起来比较方便,但是由于其封装和隐藏了太多细节,使其看起来比较神秘.比如协程是否是真正的异步执行?协程与线程到底是什么关系?本文将从语义角度来分析隐藏在协程背后的原理,并使用C++来 ...

  4. Unity协程(Coroutine)原理深入剖析再续

    Unity协程(Coroutine)原理深入剖析再续 By D.S.Qiu 尊重他人的劳动,支持原创,转载请注明出处:http.dsqiu.iteye.com 前面已经介绍过对协程(Coroutine ...

  5. 【转】Unity协程(Coroutine)原理深入剖析

    Unity协程(Coroutine)原理深入剖析 By D.S.Qiu 尊重他人的劳动,支持原创,转载请注明出处:http.dsqiu.iteye.com 记得去年6月份刚开始实习的时候,当时要我写网 ...

  6. 聊一聊Unity协程背后的实现原理

    Unity开发不可避免的要用到协程(Coroutine),协程同步代码做异步任务的特性使程序员摆脱了曾经异步操作加回调的编码方式,使代码逻辑更加连贯易读.然而在惊讶于协程的好用与神奇的同时,因为不清楚 ...

  7. unity协程coroutine浅析

    转载请标明出处:http://www.cnblogs.com/zblade/ 一.序言 在unity的游戏开发中,对于异步操作,有一个避免不了的操作: 协程,以前一直理解的懵懵懂懂,最近认真充电了一下 ...

  8. Unity 协程使用指南

    0x00 前言 在使用Unity的过程中,对协程仅仅知道怎样使用,但并不知道协程的内部机理,对于自己不清楚的部分就像一块大石压力心里.让自己感觉到担忧和不适. 这篇文章一探到底,彻底揭开协程的面纱,让 ...

  9. Unity协程使用经验

    [Unity协程使用经验] 1.协程的好处是,异步操作发起的地方和结束的地方可以统一在一个方法,这样就不用引入额外的成员变量来进行状态同步. 2.在一个协程中,StartCoroutine()和 yi ...

随机推荐

  1. 吴裕雄--天生自然JAVA面向对象高级编程学习笔记:宠物商店实例分析

    interface Pet{ // 定义宠物接口 public String getName() ; public String getColor() ; public int getAge() ; ...

  2. arm linux 移植 python3.6

    背景: 人生苦短,我用Python. 说明: 编译Python的嵌入式版需要解释器解析setup.py从而编译Python的模块,因此需要先编译出host的解释器.(有点像Go语言) Python : ...

  3. Kubernetes 各版本镜像列表

    以下镜像列表由 kubeadm v1.11.1 导出,若使用预下载镜像离线部署的方式部署,请使用 kubeadm v1.11.1 版本 导出各版本镜像列表: kubeadm config images ...

  4. 【微信小程序】数组操作

    Page({ data: { list:[{ id:1, name:'应季鲜果', count:1 },{ id:2, name:'精致糕点', count:6 },{ id:3, name:'全球美 ...

  5. Docker 学习之mysql与redis(二)

    在上一随笔中主要就是记录docker的基本使用以及nginx与php服务器的配置:在这一章将主要记录docker安装mysql与redis. 本节随笔参考网址:https://www.runoob.c ...

  6. C中的文件操作函数[笔记]

    头件 : #include<stdio.h> 两个必须函数: FILE * fopen(const char * path,const char * mode); //path:文件路径 ...

  7. Spark Shuffle 过程

    本文参考:http://www.cnblogs.com/cenyuhai/p/3826227.html 在数据流动的整个过程中,最复杂最影响性能的环节,就是 Shuffle 过程,本文将参考大神的博客 ...

  8. Codeforces 459E Roland and Rose

    本以为是个树形DP,按照树形DP的方法在那里dfs,结果WA到死,因为它存在有向环,不是树,凡是存在环的情况切记不要用树形的方法去做 题目的突破点在于将边排完序之后,用点表示以该点为边结尾的最大长度, ...

  9. 51nod 1294 :修改数组 && HDU 5256:序列变换

    1294 修改数组 题目来源: HackerRank 基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题  收藏  取消关注 给出一个整数数组A,你可以将任何一个数修 ...

  10. GNS3 ip route 命令解析

    ip route 120.94.0.0 255.254.0.0 172.16.252.1ip route 192.168.0.0 255.255.0.0 10.10.10.119ip route 21 ...