用tensorflow求手写数字的识别准确率 (简单版)
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#载入数据集
mnist = input_data.read_data_sets("F:\\TensorflowProject\\MNIST_data",one_hot=True) #每个批次的大小,训练时一次100张放入神经网络中训练
batch_size = 100 #计算一共有多少个批次
n_batch = mnist.train.num_examples//batch_size #定义两个placeholder
x = tf.placeholder(tf.float32,[None,784])
#0-9十个数字
y = tf.placeholder(tf.float32,[None,10]) #创建一个神经网络
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x,W)+b) #二次代价函数
#loss = tf.reduce_mean(tf.square(y-prediction))
#交叉熵代价函数
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用梯度下降法
#train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
train_step = tf.train.AdamOptimizer(0.01).minimize(loss) #1e-2
#初始化变量
init = tf.global_variables_initializer()
#结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))with tf.Session() as sess:
sess.run(init)
for epoch in range(21):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys}) #测试准确率
acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
print("Iter: "+str(epoch)+" ,Testing Accuracy "+str(acc))
###########运行结果
Extracting F:\TensorflowProject\MNIST_data\train-images-idx3-ubyte.gz
Extracting F:\TensorflowProject\MNIST_data\train-labels-idx1-ubyte.gz
Extracting F:\TensorflowProject\MNIST_data\t10k-images-idx3-ubyte.gz
Extracting F:\TensorflowProject\MNIST_data\t10k-labels-idx1-ubyte.gz
Iter: 0 ,Testing Accuracy 0.9221
Iter: 1 ,Testing Accuracy 0.9133
Iter: 2 ,Testing Accuracy 0.9271
Iter: 3 ,Testing Accuracy 0.9262
Iter: 4 ,Testing Accuracy 0.9299
Iter: 5 ,Testing Accuracy 0.9293
Iter: 6 ,Testing Accuracy 0.9301
Iter: 7 ,Testing Accuracy 0.9299
Iter: 8 ,Testing Accuracy 0.9287
Iter: 9 ,Testing Accuracy 0.9319
Iter: 10 ,Testing Accuracy 0.9317
Iter: 11 ,Testing Accuracy 0.9315
Iter: 12 ,Testing Accuracy 0.9307
Iter: 13 ,Testing Accuracy 0.932
Iter: 14 ,Testing Accuracy 0.9314
Iter: 15 ,Testing Accuracy 0.9316
Iter: 16 ,Testing Accuracy 0.9311
Iter: 17 ,Testing Accuracy 0.9333
Iter: 18 ,Testing Accuracy 0.9318
Iter: 19 ,Testing Accuracy 0.9318
Iter: 20 ,Testing Accuracy 0.9289
用tensorflow求手写数字的识别准确率 (简单版)的更多相关文章
- TensorFlow 之 手写数字识别MNIST
官方文档: MNIST For ML Beginners - https://www.tensorflow.org/get_started/mnist/beginners Deep MNIST for ...
- OpenCV+TensorFlow图片手写数字识别(附源码)
初次接触TensorFlow,而手写数字训练识别是其最基本的入门教程,网上关于训练的教程很多,但是模型的测试大多都是官方提供的一些素材,能不能自己随便写一串数字让机器识别出来呢?纸上得来终觉浅,带着这 ...
- python-积卷神经网络全面理解-tensorflow实现手写数字识别
首先,关于神经网络,其实是一个结合很多知识点的一个算法,关于cnn(积卷神经网络)大家需要了解: 下面给出我之前总结的这两个知识点(基于吴恩达的机器学习) 代价函数: 代价函数 代价函数(Cost F ...
- Tensorflow实战 手写数字识别(Tensorboard可视化)
一.前言 为了更好的理解Neural Network,本文使用Tensorflow实现一个最简单的神经网络,然后使用MNIST数据集进行测试.同时使用Tensorboard对训练过程进行可视化,算是打 ...
- TensorFlow——MNIST手写数字识别
MNIST手写数字识别 MNIST数据集介绍和下载:http://yann.lecun.com/exdb/mnist/ 一.数据集介绍: MNIST是一个入门级的计算机视觉数据集 下载下来的数据集 ...
- 【转】机器学习教程 十四-利用tensorflow做手写数字识别
模式识别领域应用机器学习的场景非常多,手写识别就是其中一种,最简单的数字识别是一个多类分类问题,我们借这个多类分类问题来介绍一下google最新开源的tensorflow框架,后面深度学习的内容都会基 ...
- 100天搞定机器学习|day39 Tensorflow Keras手写数字识别
提示:建议先看day36-38的内容 TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edge ...
- 用Keras搭建神经网络 简单模版(三)—— CNN 卷积神经网络(手写数字图片识别)
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...
- opencv实现KNN手写数字的识别
人工智能是当下很热门的话题,手写识别是一个典型的应用.为了进一步了解这个领域,我阅读了大量的论文,并借助opencv完成了对28x28的数字图片(预处理后的二值图像)的识别任务. 预处理一张图片: 首 ...
随机推荐
- Spring框架中的JDK与CGLib动态代理
JDK和CGLib动态代理区别 JDK动态代理:利用拦截器(拦截器必须实现InvocationHanlder)加上反射机制生成一个实现代理接口的匿名类, 在调用具体方法前调用InvokeHandler ...
- 拷贝Maven工程依赖的jar包出来
参考:https://blog.csdn.net/fengsheng5210/article/details/80491731
- 域名配置DNS解析A记录,映射到主机
有很多域名的供应商,随便选,哪个便宜用哪个.godaddy一直支持支付宝,不用visa,虽然它是国外的. 我用的是godaddy,这两年有中文版的了,虽然它有了中文版,但是比以前的英文版还要慢. 进入 ...
- 新闻网大数据实时分析可视化系统项目——18、Spark SQL快速离线数据分析
1.Spark SQL概述 1)Spark SQL是Spark核心功能的一部分,是在2014年4月份Spark1.0版本时发布的. 2)Spark SQL可以直接运行SQL或者HiveQL语句 3)B ...
- Manacher算法[O(n)]
问题描述: 输入一个字符串,求出其中最大的回文子串.子串的含义是:在原串中连续出现的字符串片段.回文的含义是:正着看和倒着看相同,如abba和yyxyy. 算法基本要点: 首先用一个非常巧妙的方式,将 ...
- docker 容器启动时设置环境变量source
镜像启动时,自动执行的是~/.bashrc文件,所以,环境变量需要配置在该文件内,这样镜像启动时,可自动执行该文件,使环境变量生效. vi ~/.bashrc ------------------- ...
- ubuntu---NVIDIA驱动 + CUDA 安装完可能会遇见的问题
如果稍不注意:系统内核.GCC.下载的版本不对应.安装过程中选项选择不正确,在NVIDIA驱动 + CUDA 安装完后可能会遇见一些问题. 一.登陆不进桌面 可能的操作: (1)nivida驱动安装完 ...
- Linux服务器命令大全
快捷提示键: table 查看文件夹: ls , ls –all ,ls –l,ll 进入某个文件夹: cd usr/local 回到root 目录 : cd /root/ 回到根目录:cd / 回 ...
- NO15 第一关课后考试
第一关课后考试: 1.创建目录/data/oldboy,并且在该目录下创建文件oldboy.txt,然后在文件oldboy.txt里写如内容:inet addr:10.0.0.8 Bcast:10.0 ...
- WFP之WFP简介
·过滤引擎是WFP的核心组成部分,过滤引擎分为两大层:用户态基础过滤引擎和内核态过滤引擎.基础过滤引擎会与内核过滤引擎交互.·内核态过滤引擎是整个过滤引擎的主体,内部分为多个分层,每分层都代表着网络协 ...