问题定义:

给定一个长度为N的数组A,找出一个最长的单调递增子序列(不要求连续)。

这道题共3种解法。

1. 动态规划

动态规划的核心是状态的定义和状态转移方程。定义lis(i),表示前i个数中以A[i]结尾的最长递增子序列的长度。可以得到以下的状态转移方程:

d(i) = max(, d(j) + ), 其中j < i,且A[j] <= A[i]

程序实现:

int longestIncreasingSubsequence(vector<int> nums)
{
if (nums.empty())
return ;
int len = nums.size();
vector<int> lis(len, ); for (int i = ; i < len; ++i)
{
for (int j = ; j < i; ++j)
{
if (nums[j] < nums[i] && lis[i] < lis[j] + )
lis[i] = lis[j] + ;
}
}
return *max_element(lis.begin(), lis.end());
}

程序复杂度为O(N^2)

2. 动态规划 + 二分查找

换一种角度看问题。令Ai,j表示所有长度为j的最大递增子序列的最小末尾,我们有Ai,1 < Ai,2 < ... < Ai,j。

对A[i+1]来说,有两种选择。

1. Ai,j < A[i+1], 此时我们可以得到一个长度为i+1的最大递增子序列。

2. 替换Ai,k,如果Ai,k-1 < A[i+1] < Ai,k。

替换长度为k的最大递增子序列的最小末尾,是为了增大获取更长子序列的机会。

程序实现:

int binarySearch(const int arr[], int low, int high, int val)
{
while (low <= high)
{
int mid = low + (high - low) / ; // Do not use (low + high) / 2 which might encounter overflow issue if (val < arr[mid])
high = mid - ;
else if (val > arr[mid])
low = mid + ;
else
return mid;
}
return low;
}
int LIS(int arr[], int n)
{
int *minTail = new int[n];
minTail[] = arr[];
int len = ;
for (int i = ; i < n; ++i)
{
if (arr[i] > minTail[len-])
minTail[len++] = arr[i];
else
{
int pos = binarySearch(minTail, , len-, arr[i]);
minTail[pos] = arr[i];
}
}
delete [] minTail;
return len;
}

复杂度:O(nlogn)

reference :

最长递增子序列(LIS)

3. 排序+LCS

这种方法就不细说了。。。

最长递增子序列(Longest increasing subsequence)的更多相关文章

  1. 【转】动态规划:最长递增子序列Longest Increasing Subsequence

    转自:https://www.cnblogs.com/coffy/p/5878915.html 设f(i)表示L中以ai为末元素的最长递增子序列的长度.则有如下的递推方程: 这个递推方程的意思是,在求 ...

  2. 算法实践--最长递增子序列(Longest Increasing Subsquence)

    什么是最长递增子序列(Longest Increasing Subsquence) 对于一个序列{3, 2, 6, 4, 5, 1},它包含很多递增子序列{3, 6}, {2,6}, {2, 4, 5 ...

  3. 300最长上升子序列 · Longest Increasing Subsequence

    [抄题]: 往上走台阶 最长上升子序列问题是在一个无序的给定序列中找到一个尽可能长的由低到高排列的子序列,这种子序列不一定是连续的或者唯一的. 样例 给出 [5,4,1,2,3],LIS 是 [1,2 ...

  4. [Swift]LeetCode300. 最长上升子序列 | Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  5. 最长递增子序列(Longest Increase Subsequence)

    问题 给定一个长度为N的数组,找出一个最长的单调自增子序列(不一定连续,但是顺序不能乱).例如:给定一个长度为6的数组A{5, 6, 7, 1, 2, 8},则其最长的单调递增子序列为{5,6,7,8 ...

  6. nlog(n)解动态规划--最长上升子序列(Longest increasing subsequence)

    最长上升子序列LIS问题属于动态规划的初级问题,用纯动态规划的方法来求解的时间复杂度是O(n^2).但是如果加上二叉搜索的方法,那么时间复杂度可以降到nlog(n).  具体分析参考:http://b ...

  7. 动态规划--最长上升子序列(Longest increasing subsequence)

    前面写了最长公共子序列的问题.然后再加上自身对动态规划的理解,真到简单的DP问题很快就解决了.其实只要理解了动态规划的本质,那么再有针对性的去做这方的题目,思路很快就会有了.不错不错~加油 题目描述: ...

  8. [Swift]LeetCode329. 矩阵中的最长递增路径 | Longest Increasing Path in a Matrix

    Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...

  9. [Swift]LeetCode594. 最长和谐子序列 | Longest Harmonious Subsequence

    We define a harmonious array is an array where the difference between its maximum value and its mini ...

随机推荐

  1. python--->相对和绝对路径

    绝对路径(absolute path):从根开始找 eg:c:\file\01.txt 相对路径(relative path):相对当前文件内找 ../      # 当前文件的上一级 os.path ...

  2. 六、路由详细介绍之动态路由RIP(了解一下就行)

    动态路由分为距离矢量路由(RIP)和链路状态(OSPF和ISIS) 一.离矢量路由协议-RIP RIP协议现在基本上被淘汰. RIP动态路由协议工作原理,如上图: R12中有192.168.1.0和1 ...

  3. std::string::assign函数

    string& assign (const string& str); string& assign (const string& str, size_t subpos ...

  4. shell命令-for语句

    数字循环 sum=0 for((i=1;i<=10;i++)) do sum=$(($sum+$i)) echo "$i:$sum" done 字符循环 for i in ` ...

  5. JAVA—HashMap

    一些关于hashmap的学习笔记 1.HashMap底层实现原理 在JDK1.7中HashMap是以数组加链表的形式组成的,在JDK1.8之后新增了红黑树的组成结构,当链表大于8并且容量大于64时,链 ...

  6. Android | 教你如何在安卓上实现二代身份证识别,一键实名认证

    @ 目录 前言 场景 开发前准备 android studio 安装 在项目级gradle里添加华为maven仓 在应用级的build.gradle里面加上SDK依赖 在AndroidManifest ...

  7. 9.回文数-LeetCode

    判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 121输出: true示例 2: 输入: -121输出: false解释: 从左向右读, ...

  8. winfrom 基础

    1 winfrom就是一种窗体开发端应用程序 2 窗体分类 1)记事本类:可以最大最小化,可以拖拽                                                窗体默 ...

  9. jmeter并发时生成唯一变量

    vars.put("partnerOrderId","ZS"+Thread.currentThread().getId()+System.currentTime ...

  10. MySQL优化之COUNT(*)效率(部分转载与个人亲测)

    说到MySQL的COUNT(*)的效率,发现越说越说不清楚,干脆写下来,分享给大家. COUNT(*)与COUNT(COL)网上搜索了下,发现各种说法都有:比如认为COUNT(COL)比COUNT(* ...