题目:http://codeforces.com/contest/1204/problem/C

C. Anna, Svyatoslav and Maps
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The main characters have been omitted to be short.

You are given a directed unweighted graph without loops with nn vertexes and a path in it (that path is not necessary simple) given by a sequence p1,p2,…,pmp1,p2,…,pm of mm vertexes; for each 1≤i<m1≤i<m there is an arc from pipi to pi+1pi+1.

Define the sequence v1,v2,…,vkv1,v2,…,vk of kk vertexes as good, if vv is a subsequence of pp, v1=p1v1=p1, vk=pmvk=pm, and pp is one of the shortest paths passing through the vertexes v1v1, ……, vkvk in that order.

A sequence aa is a subsequence of a sequence bb if aa can be obtained from bb by deletion of several (possibly, zero or all) elements. It is obvious that the sequence pp is good but your task is to find the shortest good subsequence.

If there are multiple shortest good subsequences, output any of them.

Input

The first line contains a single integer nn (2≤n≤1002≤n≤100) — the number of vertexes in a graph.

The next nn lines define the graph by an adjacency matrix: the jj-th character in the ii-st line is equal to 11 if there is an arc from vertex ii to the vertex jj else it is equal to 00. It is guaranteed that the graph doesn't contain loops.

The next line contains a single integer mm (2≤m≤1062≤m≤106) — the number of vertexes in the path.

The next line contains mm integers p1,p2,…,pmp1,p2,…,pm (1≤pi≤n1≤pi≤n) — the sequence of vertexes in the path. It is guaranteed that for any 1≤i<m1≤i<m there is an arc from pipi to pi+1pi+1.

Output

In the first line output a single integer kk (2≤k≤m2≤k≤m) — the length of the shortest good subsequence. In the second line output kk integers v1v1, ……, vkvk (1≤vi≤n1≤vi≤n) — the vertexes in the subsequence. If there are multiple shortest subsequences, print any. Any two consecutive numbers should be distinct.

Examples
input

Copy
4
0110
0010
0001
1000
4
1 2 3 4
output

Copy
3
1 2 4
input

Copy
4
0110
0010
1001
1000
20
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
output

Copy
11
1 2 4 2 4 2 4 2 4 2 4
input

Copy
3
011
101
110
7
1 2 3 1 3 2 1
output

Copy
7
1 2 3 1 3 2 1
input

Copy
4
0110
0001
0001
1000
3
1 2 4
output

Copy
2
1 4
Note

Below you can see the graph from the first example:

The given path is passing through vertexes 11, 22, 33, 44. The sequence 1−2−41−2−4 is good because it is the subsequence of the given path, its first and the last elements are equal to the first and the last elements of the given path respectively, and the shortest path passing through vertexes 11, 22 and 44 in that order is 1−2−3−41−2−3−4. Note that subsequences 1−41−4 and 1−3−41−3−4 aren't good because in both cases the shortest path passing through the vertexes of these sequences is 1−3−41−3−4.

In the third example, the graph is full so any sequence of vertexes in which any two consecutive elements are distinct defines a path consisting of the same number of vertexes.

In the fourth example, the paths 1−2−41−2−4 and 1−3−41−3−4 are the shortest paths passing through the vertexes 11 and 44.

题意:

给出n个点和他们的邻接关系,再给出一个序列,问如何删去尽可能多的点使得剩下的点的最短路仍是原序列

思路:

如果当前点到当前遍历到的点的距离大于最短路,则说明当前点是必须被加进答案的,因为要保证最短路是给出的序列,如果不选这个点就会让序列最短路变短,
所以更新答案的当前节点为遍历到的节点的上一个节点,当前节点到遍历的点的最短距离也要更新
比如样例1中原序列为1 2 3 4,其中1->2->3距离为2,而1->3的最短路为1,所以我们要加入2节点才能保证最短路仍是原来的序列,否则最短路就会变短

 #include<bits/stdc++.h>
using namespace std;
const int amn=1e2+,amn1=1e6+,inf=0x3f3f3f3f;
int dis[amn][amn],a[amn][amn],p[amn1],ans[amn1];
int main(){
int n,m;char in;
ios::sync_with_stdio();
cin>>n;
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
cin>>in;
a[i][j]=in-'';
if(i==j)dis[i][j]=;
else{
if(a[i][j])dis[i][j]=;
else dis[i][j]=inf;
}
}
}
///floyd求任意两点间的最短路
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
cin>>m;
for(int i=;i<=m;i++)cin>>p[i];
int d=,tp=; ///d为当前点到当前遍历到的点的距离
ans[++tp]=p[]; ///题目要求开头必须在序列中
for(int i=;i<=m;i++){
d+=dis[p[i-]][p[i]];
if(d<=dis[ans[tp]][p[i]])continue;
ans[++tp]=p[i-]; ///如果当前点到当前遍历到的点的距离大于最短路,则说明当前点是必须被加进答案的,因为要保证最短路是给出的序列,如果不选这个点就会让最短路变短,所以更新答案的当前节点,当前节点到遍历的点的最短距离也要更新
d=dis[ans[tp]][p[i]];
}
ans[++tp]=p[m]; ///题目要求结尾必须在序列中
printf("%d\n",tp);
for(int i=;i<=tp;i++)printf("%d%c",ans[i],i<tp?' ':'\n');
}
/**
给出n个点和他们的邻接关系,再给出一个序列,问如何删去尽可能多的点使得剩下的点的最短路仍是原序列
如果当前点到当前遍历到的点的距离大于最短路,则说明当前点是必须被加进答案的,因为要保证最短路是给出的序列,如果不选这个点就会让序列最短路变短,
所以更新答案的当前节点为遍历到的节点的上一个节点,当前节点到遍历的点的最短距离也要更新
比如样例1中原序列为1 2 3 4,其中1->2->3距离为2,而1->3的最短路为1,所以我们要加入2节点才能保证最短路仍是原来的序列,否则最短路就会变短
**/

[最短路,floyd] Codeforces 1204C Anna, Svyatoslav and Maps的更多相关文章

  1. codeforces 1204C Anna, Svyatoslav and Maps(floyd+dp)

    题目链接:http://codeforces.com/problemset/problem/1204/C 给定一组序列,P1,P2,P3...Pm,这是一组合法路径的序列,即任意的Pi和Pi+1之间有 ...

  2. 1204C Anna, Svyatoslav and Maps

    题目大意 给你一个有向图和一个路径 让你在给定路径中选出尽量少的点使得新路径的最短路长度和原路径相等 给定路径相邻两点间距离为1 分析 先floyd求出两点间最短路 之后每次对于点i找到所有跟它的最短 ...

  3. Codeforces Round #581 (Div. 2) C. Anna, Svyatoslav and Maps (Floyd 算法,最短路)

    C. Anna, Svyatoslav and Maps time limit per test2 seconds memory limit per test256 megabytes inputst ...

  4. C. Anna, Svyatoslav and Maps

    C. Anna, Svyatoslav and Maps 给定一个有向图,给定一条有向路径,求一条顶点最少的路径,使得给定的路径是它的最短路 folyd预处理出任意两点间的最短路,然后判断是否可以缩点 ...

  5. [最短路,floyd] Codeforces 1202B You Are Given a Decimal String...

    题目:http://codeforces.com/contest/1202/problem/B B. You Are Given a Decimal String... time limit per ...

  6. Codeforces1204C. Anna, Svyatoslav and Maps (贪心 + Floyd)

    题目链接:传送门 题目大意: 给出n<=100的有向图,和路径p,求p的最短子序列v,使得依次经过v中所有点的路径为p. 思路: 题意其实就是让我们求路径上的一些关键点v,对于所有的关键点:vi ...

  7. ACM/ICPC 之 最短路-Floyd+SPFA(BFS)+DP(ZOJ1232)

    这是一道非常好的题目,融合了很多知识点. ZOJ1232-Adventrue of Super Mario 这一题折磨我挺长时间的,不过最后做出来非常开心啊,哇咔咔咔 题意就不累述了,注释有写,难点在 ...

  8. 模板C++ 03图论算法 2最短路之全源最短路(Floyd)

    3.2最短路之全源最短路(Floyd) 这个算法用于求所有点对的最短距离.比调用n次SPFA的优点在于代码简单,时间复杂度为O(n^3).[无法计算含有负环的图] 依次扫描每一点(k),并以该点作为中 ...

  9. 最短路 - floyd算法

    floyd算法是多源最短路算法 也就是说,floyd可以一次跑出所以点两两之间的最短路 floyd类似动态规划 如下图: 用橙色表示边权,蓝色表示最短路 求最短路的流程是这样的: 先把点1到其他点的最 ...

随机推荐

  1. mysql5.6和5.7的权限密码设置

    mysql5.6grant all privileges on *.* to root@'%' identified by "mysql_pwd" with grant optio ...

  2. 2.mac下 安装go-ethereum

    Contents 上代码 A.前期准备:http://m.2cto.com/kf/201612/573010.html (1)安装python2.7,mac在终端中直接使用以下命令:brew inst ...

  3. GNS3(1)——OSPF多区域配置

    GNS3(1)——OSPF多区域配置 RIP适用于中小网络,比较简单.没有系统内外.系统分区,边界等概念,用到不是分类的路由. OSPF适用于较大规模网络.它把自治系统分成若干个区域,通过系列内外路由 ...

  4. docker save和load将本地镜像上传AWS

    今天在AWS云主机上部署Grafana,发现无法使用私有仓库,于是,尝试了下docker save和docker load.着实很好用,简单记录下: docker save用法: Usage: doc ...

  5. 大马提权详细过程webshell到提权

    .在shell路径这一栏里输入服务器端cmd.exe对应的绝对路径,这里用我们刚刚上传上去的smallchao.exe 8.WINDOWS常见命令:net user 查看所有用户query user ...

  6. vue-cli “从入门到放弃”

    主要作用:目录结构.本地调试.代码部署.热加载.单元测试 在如今前端技术飞速发展的时代,angular.js.vue.js 和 react.js 作为前端框架已经呈现出了三国鼎立的局面.作为国人若你不 ...

  7. Skeleton Screen加载占位图(内容出现前显示灰色占位图)的分析与实现

    今天有几个好友问了这个叫加载占位图的实现方法,我还在此问题下做了个回答.由于国内对这个的名词是各有各的叫法,所以这里直接用加载占位图来解释.相信很多人都看到过图中这样的加载方式: 这个图是一个国内知名 ...

  8. href="#"和href=“javascript:void(0)”的区别

    void是javascript中的关键字,该操作符指定要计算一个表达式但是不返回值. <a href="javascript:void(0);">点我没有反应的!< ...

  9. JS中面向对象中的继承(常用写法)---核心部分

    1.基本概念 子类继承父类,但是不能影响父类.包括1.混合继承(构造函数+原型) 2.ES6新增class的继承. 接下来介绍,面向对象中继承的两种常用写法.即混合继承(构造函数+原型)和class继 ...

  10. 安装mysql.so

    1.----   cd /usr/local/src/php-5.5.34/ext/mysql/2.----  /usr/local/php5/bin/phpize3.---- ./configure ...