一、Cost Function and Backpropagation

神经网络的损失函数:

\[J(\Theta) = - \frac{1}{m} \sum_{i=1}^m \sum_{k=1}^K \left[y^{(i)}_k \log ((h_\Theta (x^{(i)}))_k) + (1 - y^{(i)}_k)\log (1 - (h_\Theta(x^{(i)}))_k)\right] + \frac{\lambda}{2m}\sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} ( \Theta_{j,i}^{(l)})^2
\]



这个cost function是在logistic regression基础上演变而来,只是神经网络有很多输出结点,而logistic regression只有一个输出结点,所以这个cost function只是把所有的K个输出结点的损失函数进行累加。

得到cost function后,为了寻找使得\(J(\theta)\)最小的那组参数\(\theta\),我们需要知道\(J(\theta)\)关于每个\(\theta\)的偏导数,而后向传播算法可以帮助我们计算偏导数:



对于每个训练样本,先利用forward propagation计算每一层的\(a\):



接着利用样本真实标签\(y^{(t)}\)计算最后一层的误差值;

之后从右向左计算每一层(输入层除外)的误差:



这样每个样本一次正向、一次反向来更新误差矩阵:



向量化表示:



最后,就可以得到偏导数:



二、Backpropagation in Pratice

为了使用fminunc等高级的优化方法来求得cost function的最小值,所以将\(\theta\)这个矩阵展成向量传入fminunc,完成后可以通过reshape从向量中提取\(\theta^{(1)}、\theta^{(2)}\)等:

为了确保我们使用Backpropagation求得的偏导数的正确性,可以使用Gradient Checking(很慢)来检验:

根据偏导数定义:

\[\dfrac{\partial}{\partial\Theta_j}J(\Theta) \approx \dfrac{J(\Theta_1, \dots, \Theta_j + \epsilon, \dots, \Theta_n) - J(\Theta_1, \dots, \Theta_j - \epsilon, \dots, \Theta_n)}{2\epsilon}
\]

\[一般\epsilon=10^{-4}
\]

通过将这种方式计算的偏导数与之前Backpropagation求得的偏导数比较,即可得知Backpropagation的正确性。

之前在Linear Regression和Logistic Regression,我们可以用全0来初始化\(\theta\),但在神经网络中,这样做会有问题,所以采用随机初始化



最后,从整体捋一遍流程:

1、选择网络结构:



2、训练神经网络:

对每一个训练样本:

#Week7 Neural Networks : Learning的更多相关文章

  1. Machine Learning - 第5周(Neural Networks: Learning)

    The Neural Network is one of the most powerful learning algorithms (when a linear classifier doesn't ...

  2. (原创)Stanford Machine Learning (by Andrew NG) --- (week 5) Neural Networks Learning

    本栏目内容来自Andrew NG老师的公开课:https://class.coursera.org/ml/class/index 一般而言, 人工神经网络与经典计算方法相比并非优越, 只有当常规方法解 ...

  3. Stanford机器学习---第五讲. 神经网络的学习 Neural Networks learning

    原文 http://blog.csdn.net/abcjennifer/article/details/7758797 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  4. Andrew Ng机器学习 四:Neural Networks Learning

    背景:跟上一讲一样,识别手写数字,给一组数据集ex4data1.mat,,每个样例都为灰度化为20*20像素,也就是每个样例的维度为400,加载这组数据后,我们会有5000*400的矩阵X(5000个 ...

  5. Ng第九课:神经网络的学习(Neural Networks: Learning)

    9.1  代价函数 9.2  反向传播算法 9.3  反向传播算法的直观理解 9.4  实现注意:展开参数 9.5  梯度检验 9.6  随机初始化 9.7  综合起来 9.8  自主驾驶 9.1   ...

  6. 斯坦福大学公开课机器学习: neural networks learning - autonomous driving example(通过神经网络实现自动驾驶实例)

    使用神经网络来实现自动驾驶,也就是说使汽车通过学习来自己驾驶. 下图是通过神经网络学习实现自动驾驶的图例讲解: 左下角是汽车所看到的前方的路况图像.左上图,可以看到一条水平的菜单栏(数字4所指示方向) ...

  7. MachineLearning Exercise 4 :Neural Networks Learning

    nnCostFunction 消耗公式: a1 = [ones(m,) X]; z2 = a1*Theta1'; pre = sigmoid(a1*Theta1'); a2 = [ones(m,) p ...

  8. 【原】Coursera—Andrew Ng机器学习—Week 5 习题—Neural Networks learning

    课上习题 [1]代价函数 [2]代价函数计算 [3] [4]矩阵的向量化 [5]梯度校验 Answer:(1.013 -0.993) / 0.02 = 3.001 [6]梯度校验 Answer:学习的 ...

  9. Coursera 机器学习 第5章 Neural Networks: Learning 学习笔记

    5.1节 Cost Function神经网络的代价函数. 上图回顾神经网络中的一些概念: L  神经网络的总层数. sl  第l层的单元数量(不包括偏差单元). 2类分类问题:二元分类和多元分类. 上 ...

随机推荐

  1. adb工作常用命令

    adb devices 查看手机名 adb shell链接手机 dumpsys window windows |grep -i current 打开软件,查看软件入口,和包名,白色为包名,红框为包入口 ...

  2. (js描述的)数据结构[树结构1.2](12)

    1.先序遍历 2.中序遍历 3.后序遍历 4.递归调用栈详解: 详细见: https://zhuanlan.zhihu.com/p/24291978 5.删除节点操作分析: 5.代码封装 //封装二叉 ...

  3. Web Scraper 高级用法——使用 CouchDB 存储数据 | 简易数据分析 18

    这是简易数据分析系列的第 18 篇文章. 利用 web scraper 抓取数据的时候,大家一定会遇到一个问题:数据是乱序的.在之前的教程里,我建议大家利用 Excel 等工具对数据二次加工排序,但还 ...

  4. springboot httpsession.getAtt....is null

    1.开始怀疑是 @RequestMapping("") public String loginIndex() { return "admin/login"; } ...

  5. 微信小程序页面通信

    目录 微信小程序页面通信 方式一:通过URL 方式二:通过全局变量 方式三:通过本地存储 方式四:通过路由栈 微信小程序页面通信 方式一:通过URL // A 页面 wx.navigateTo({ u ...

  6. AJ学IOS 之微博项目实战(12)发送微博自定义工具条代理实现点击事件

    AJ分享,必须精品 一:效果 二:封装好的工具条 NYComposeToolbar.h 带代理方法 #import <UIKit/UIKit.h> typedef enum { NYCom ...

  7. Salesforce学习 | 系统管理员Admin如何添加用户

    作为世界排名第一的CRM云计算软件,不管的是500强还是中小企业,越来越多的公司都选择使用Salesforce来分享客户信息,管理和开发具有更高收益的客户关系.Salesforce Administr ...

  8. SpringBoot系列(八)分分钟学会Springboot多种解决跨域方式

    SpringBoot系列(八) 分分钟学会SpringBoot多种跨域解决方式 往期推荐 SpringBoot系列(一)idea新建Springboot项目 SpringBoot系列(二)入门知识 s ...

  9. 如何可视化深度学习网络中Attention层

    前言 在训练深度学习模型时,常想一窥网络结构中的attention层权重分布,观察序列输入的哪些词或者词组合是网络比较care的.在小论文中主要研究了关于词性POS对输入序列的注意力机制.同时对比实验 ...

  10. 数据类型、运算符、Scanner的使用

              一.常见的基本数据类型      数值型  byte(最小,2字节)      short(4字节) int (默认 8字节)    long(16字节)      浮点型   f ...