题目链接

AtCoder:https://agc014.contest.atcoder.jp/tasks/agc014_e

洛谷:https://www.luogu.org/problemnew/show/AT2377

Solution

秒了\(O(n^2)\)不会优化是什么鬼...最后膜了大佬的题解才会写...

注意到最后一条边一定在蓝图上存在,在红图上也存在,那么我们可以找到任意一条这样的边,把两端的点合并起来,蓝图和红图都合并,剩下的是一个子问题,做\(n-1\)遍就好了,复杂度\(O(n^2)\)。

那么合并节点可以用并查集,然后每次暴力遍历点度小的那个点启发式合并就好了。

全程\(STL\)代码很恶心...注意并查集到处都要\(find\)一下,我就是挂的这里然后调了好久...

复杂度\(O(n\log ^2 n)\)。

#include<bits/stdc++.h>
using namespace std; void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
} void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');} #define lf double
#define ll long long
#define pb push_back #define pii pair<int,int >
#define mp make_pair
#define fr first
#define sc second #define iter_map map<int,int > :: iterator
#define iter_vec vector<int > :: iterator
#define iter_set set<int > :: iterator const int maxn = 5e5+10;
const int inf = 1e9;
const lf eps = 1e-8; struct DSU {
int fa[maxn];
void init(int n) {for(int i=1;i<=n;i++) fa[i]=i;}
int find(int x) {return fa[x]==x?x:fa[x]=find(fa[x]);}
}dsu; queue<pii > q;
set<int > e[maxn];
map<pii,int > s;
int n,d[maxn]; pii get(int x,int y) {return mp(min(x,y),max(x,y));} void ins(int x,int y) {
e[x].insert(y),e[y].insert(x);
pii now=get(x,y);s[now]++;
if(s[now]==2) q.push(now);
} int main() {
read(n);dsu.init(n);
for(int i=1,x,y;i<n*2-1;i++) read(x),read(y),ins(x,y);
for(int i=1,x,y;i<n;i++) {
while(1) {
if(q.empty()) {puts("NO");exit(0);}
x=dsu.find(q.front().fr),y=dsu.find(q.front().sc);q.pop(); //记得find...
if(x!=y) break;
}
if(e[x].size()>e[y].size()) swap(x,y);
dsu.fa[x]=y,s.erase(get(x,y)),e[y].erase(x);
for(iter_set it=e[x].begin();it!=e[x].end();it++) {
int t=dsu.find(*it);
if(t==y) continue;
s.erase(get(x,t));ins(t,y);
e[t].erase(x),e[x].erase(t);
}
}puts("YES");
return 0;
}

[AT2377] [agc014_e] Blue and Red Tree的更多相关文章

  1. AT2377 Blue and Red Tree

    AT2377 Blue and Red Tree 法一:正推 红色的边在蓝色的树上覆盖,一定每次选择的是覆盖次数为1的边的覆盖这条边的红色边连出来 覆盖次数可以树剖找到 这条红色边,可以开始的时候每个 ...

  2. AGC014E Blue and Red Tree

    题意 There is a tree with \(N\) vertices numbered \(1\) through \(N\). The \(i\)-th of the \(N−1\) edg ...

  3. AtCoder Grand Contest 014 E:Blue and Red Tree

    题目传送门:https://agc014.contest.atcoder.jp/tasks/agc014_e 题目翻译 有一棵有\(N\)个点的树,初始时每条边都是蓝色的,每次你可以选择一条由蓝色边构 ...

  4. AtCoder AGC014E Blue and Red Tree (启发式合并)

    题目链接 https://atcoder.jp/contests/agc014/tasks/agc014_e 题解 完了考场上树剖做法都没想到是不是可以退役了... 首先有一个巨难写的据说是\(O(n ...

  5. 【AGC014E】Blue and Red Tree 并查集 启发式合并

    题目描述 有一棵\(n\)个点的树,最开始所有边都是蓝边.每次你可以选择一条全是蓝边的路径,删掉其中一条,再把这两个端点之间连一条红边.再给你一棵树,这棵树的所有边都是红边,问你最终能不能把原来的树变 ...

  6. AGC 014 E Blue and Red Tree [树链剖分]

    传送门 思路 官方题解是倒推,这里提供一种正推的做法. 不知道你们是怎么想到倒推的--感觉正推更好想啊QwQ就是不好码 把每一条红边,将其转化为蓝树上的一条路径.为了连这条红边,需要保证这条路径仍然完 ...

  7. AGC 014E.Blue and Red Tree(思路 启发式合并)

    题目链接 \(Description\) 给定两棵\(n\)个点的树,分别是由\(n-1\)条蓝边和\(n-1\)条红边组成的树.求\(n-1\)次操作后,能否把蓝树变成红树. 每次操作是,选择当前树 ...

  8. 【AGC014E】Blue and Red Tree

    Description 给定一棵\(n\)个节点的蓝边树,再给定一棵\(n\)个节点的红边树.请通过若干次操作将蓝树变成红树.操作要求和过程如下: 1.选定一条边全为蓝色的路径: 2.将路径上的一条蓝 ...

  9. [atAGC014E]Blue and Red Tree

    不断删除重边,然后将两个点的边集启发式合并(要考虑到两棵树),合并时发现重边就加入队列,最后判断是否全部删完即可 1 #include<bits/stdc++.h> 2 using nam ...

随机推荐

  1. AWVS11提取规则文件

    在这里给大家分享一个获取AWVS规则文件的思路.  目前我提取的是17年4月份的扫描规则.   后面如果规则更新,可以自行提取 官网:   https://www.acunetix.com/vulne ...

  2. 使用Nexus搭建Maven私服问题总结

    #业务场景 最近项目要交付给客户了,之前项目开发和测试一直都是使用公司内部的一套环境,项目交付后客户购置了大量服务器,也要将整套测试环境迁移至客户的服务器上,后续的需求变更以及新需求的开发都会在客户服 ...

  3. [.NET] 使用HttpClient操作HFS (HTTP File Server)

    前言 本篇文章介绍如何使用HttpClient操作HFS (HTTP File Server),为自己留个纪录也希望能帮助到有需要的开发人员.关于HTTP File Server的介绍.安装.设定,可 ...

  4. win7升级到win10,出现算术运算溢出问题

    前台winform,后台java代码是: OutputStream ou=(OutputStream)response.getOutputStream(); ou.write(rightSet.get ...

  5. 【转】在Android Studio中下载Android SDK的两种方式(Android Studio3.0、windows)

    在Android Studio中下载Android SDK的两种方式(Android Studio3.0.windows) 方式一.设置HTTP Proxy1. 打开Settings2. 点击HTTP ...

  6. JMeter学习工具简单介绍

    JMeter学习工具简单介绍   一.JMeter 介绍 Apache JMeter是100%纯JAVA桌面应用程序,被设计为用于测试客户端/服务端结构的软件(例如web应用程序).它可以用来测试静态 ...

  7. 简述AQS原理

    这是一道面试题:简述AQS原理 AQS核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态.如果被请求的共享资源被占用,那么就需要一套线程阻塞 ...

  8. 笔试题:C++打印队列

    题目:打印队列 题目介绍:现在用打印机打印队列,已知打印任务有9个优先级(1-9),现在给出一系列任务,求输出打印顺序(任务下标,从0开始). 例: 输入:9,3,5,4,7,1 输出:0,4,2,3 ...

  9. "Hello World!"团队第四次会议

    Scrum立会 博客内容是: 1.会议时间 2.会议成员 3.会议地点 4.会议内容 5.todo list 6.会议照片 7.燃尽图 一.会议时间: 2017年10月16日  11:44-12:18 ...

  10. Fisherman`Team的任务看板