【BZOJ3156】防御准备(动态规划,斜率优化)
【BZOJ3156】防御准备(动态规划,斜率优化)
题面
题解
从右往左好烦啊,直接\(reverse\)一下再看题。
设\(f[i]\)表示第\(i\)个位置强制建立检查站时,前面都满足条件的最小代价
\(f[i]=min(f[j]+sum[i-j-1])+A[i]\)
即枚举上一个检查站建立的位置。
假设存在\(k,j\)满足\(k<j\),并且\(j\)的转移优于\(k\)的转移。
那么\(f[j]+sum[i-j-1]<f[k]+sum[i-k-1]\)
因为\(sum\)这个和\(i,j,k\)有关,所以把它拆分一下,变成之与\(i\)以及只与\(j\)相关的式子
\(sum[i-j-1]=\sum_{k=1}^{i-j-1}k=sum[i-1]-sum[j]-(i-j-1)*j\)
然后再放回到上面的不等式。
即\(f[j]-sum[j]-(i-j-1)*j\lt f[k]-sum[k]-(i-k-1)*k\)
按照是否和\(i\)有关对于式子分类
\((f[j]-sum[j]+j^2+j)-(f[k]-sum[k]+k^2+k)\lt (j-k)*i\)
令\(g[i]=f[i]-sum[i]+i^2+i\)
直接除过去
\]
因为\(i\)单增,所以可以利用单调队列来完成斜率优化。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 1111111
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
ll f[MAX],s[MAX];
int n,a[MAX];
int Q[MAX],h,t;
double Slope(int i,int j){return ((f[i]-s[i]+1.0*i*i+i)-(f[j]-s[j]+1.0*j*j+j))/(i-j);}
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read();
reverse(&a[1],&a[n+1]);
for(int i=1;i<=n;++i)s[i]=s[i-1]+i;
/*
for(int i=2;i<=n;++i)
for(int j=1;j<i;++j)
f[i]=min(f[i],f[j]+s[i-1]-s[j]-j*(i-j-1)+a[i]);
*/
Q[h=t=1]=1;f[1]=a[1];
for(int i=2;i<=n;++i)
{
while(h<t&&Slope(Q[h],Q[h+1])<=i)++h;
int j=Q[h];f[i]=f[j]+s[i-1]-s[j]-j*(i-j-1)+a[i];
while(h<t&&Slope(Q[t],Q[t-1])>=Slope(Q[t-1],i))--t;
Q[++t]=i;
}
for(int i=1;i<=n;++i)f[n]=min(f[n],f[i]+s[n-i]);
printf("%lld\n",f[n]);
return 0;
}
【BZOJ3156】防御准备(动态规划,斜率优化)的更多相关文章
- BZOJ3156 防御准备 动态规划 斜率优化
原文链接http://www.cnblogs.com/zhouzhendong/p/8688187.html 题目传送门 - BZOJ3156 题意 长为$n$的序列$A$划分,设某一段为$[i,j] ...
- [BZOJ3156]防御准备(斜率优化DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP
- 2018.09.29 bzoj3156: 防御准备(斜率优化dp)
传送门 斜率dp经典题目. 然而算斜率的时候并没有注意到下标的平方会爆int于是咕咕*2. 这道题我用了两个数组来表示状态. f[i]f[i]f[i]表示最后i个位置倒数第i个放木偶的最优值. g[i ...
- BZOJ3156: 防御准备 【斜率优化dp】
3156: 防御准备 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2207 Solved: 933 [Submit][Status][Discu ...
- bzoj3156 防御准备(斜率优化)
Time Limit: 10 Sec Memory Limit: 512 MB Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Out ...
- 【学习笔记】动态规划—斜率优化DP(超详细)
[学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(D ...
- BZOJ3156 防御准备(动态规划+斜率优化)
设f[i]为在i放置守卫塔时1~i的最小花费.那么显然f[i]=min(f[j]+(i-j)*(i-j-1)/2)+a[i]. 显然这是个斜率优化入门题.将不与i.j同时相关的提出,得f[i]=min ...
- 【BZOJ-3156】防御准备 DP + 斜率优化
3156: 防御准备 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 951 Solved: 446[Submit][Status][Discuss] ...
- [bzoj1911][Apio2010特别行动队] (动态规划+斜率优化)
Description Input Output Sample Input - - Sample Output HINT Solution 斜率优化动态规划 首先易得出这样的一个朴素状态转移方程 f[ ...
- [bzoj1597][usaco2008 mar]土地购买 (动态规划+斜率优化)
Description 农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000, ...
随机推荐
- cogs1713 [POJ2774]很长的信息
cogs1713 [POJ2774]很长的信息 原题链接 题解 把两串拼成A+'%'+B+'$'.跑后缀数组然后相邻两点i,i+1不在同一串里就用ht[i]更新答案. 好裸... Code // It ...
- linux、WINDOWS命令行下查找和统计行数
linux : 例子: netstat -an | grep TIME_WAIT | wc -l | 管道符 grep 查找命令 wc 统计命令 windows: 例子: netstat -an | ...
- php引用&使用笔记
引用与赋值是两个概念:引用是共用同一个内存地址,一个改变其他也会变,赋值是另外开辟内存空间,一个改变其他不会变 一个简单例子: $a=123; //$a开辟一个内存空间存储123 $b=&$a ...
- 04-容器 What, Why, How
What - 什么是容器? 容器是一种轻量级.可移植.自包含的软件打包技术,使应用程序可以在几乎任何地方以相同的方式运行.开发人员在自己笔记本上创建并测试好的容器,无需任何修改就能够在生产系统的虚拟机 ...
- 《C++设计新思维》勘误,附C++14新解法
勘误: 原书(中文版)3.13节,65-69页中GenScatterHierarchy以及FieldHelper均存在问题,当TypeList中类型有重复时,无法通过编译(原因在于“二义性基类”). ...
- [C++] Solve "Cannot run program "gdb": Unknown reason" error
In Mac OSX, The Issue Image: 1. Build the project on Eclipse successfully. 2. Run gdb on command lin ...
- CSS3在线实战
作者声明:本博客中所写的文章,都是博主自学过程的笔记,参考了很多的学习资料,学习资料和笔记会注明出处,所有的内容都以交流学习为主.有不正确的地方,欢迎批评指正. 本节课视频网站:https://www ...
- Shell脚本初学习
第一个shell程序运行,教程来自:http://jingyan.baidu.com/article/8cdccae947f83e315413cd05.html 代码如下: #!/bin/sh tou ...
- 【探路者】团队中的每一次感动——Alpha版
我是[探路者]团队的leader翟宇豪.在软件工程课程开始时,当听说有团队作业这个任务时,我个人还是对leader这个角色很期待的.我很希望通过自己的努力,让我所在的团队变得更好,让组里的每一个成员在 ...
- Junit4 单元测试框架的常用方法介绍
Junit 介绍: Junit是一套框架(用于JAVA语言),由 Erich Gamma 和 Kent Beck 编写的一个回归测试框架(regression testing framework),即 ...