题目背景

这是一道模板题。

题目描述

给定包含 \(n\) 个结点, \(m\) 条有向边的一个图。试求一棵以结点 \(r\) 为根的最小树形图,并输出最小树形图每条边的权值之和,如果没有以 \(r\) 为根的最小树形图,输出 \(-1\) 。

输入输出格式

输入格式:

第一行包含三个整数 \(n,m,r\) ,意义同题目所述。

接下来 \(m\) 行,每行包含三个整数 \(u,v,w\) ,表示图中存在一条从 \(u\) 指向 \(v\) 的权值为 \(w\) 的有向边。

输出格式:

如果原图中存在以 \(r\) 为根的最小树形图,就输出最小树形图每条边的权值之和,否则输出 \(-1\) 。

输入输出样例

输入样例#1:

4 6 1

1 2 3

1 3 1

4 1 2

4 2 2

3 2 1

3 4 1

输出样例#1:

3

输入样例#2:

4 6 3

1 2 3

1 3 1

4 1 2

4 2 2

3 2 1

3 4 1

输出样例#2:

4

输入样例#3:

4 6 2

1 2 3

1 3 1

4 1 2

4 2 2

3 2 1

3 4 1

输出样例#3:

-1

说明

样例 \(1\) 解释

最小树形图中包含第 \(2\) , \(5\) , \(6\) 三条边,总权值为 \(1 + 1 + 1 = 3\)

样例 \(2\) 解释

最小树形图中包含第 \(3\) , \(5\) , \(6\) 三条边,总权值为 \(2 + 1 + 1 = 3\)

样例 \(3\) 解释

无法构成最小树形图,故输出 \(-1\) 。

数据范围

对于所有数据, \(1 \leq u, v \leq n \leq 100\) , \(1 \leq m \leq 10^4\) ,\(1 \leq w \leq 10^6\) ​​。

题解

最小树形图模板题,打板子就好了

如果你不会最小树形图,看这个图,或者看这里

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=100+10,MAXM=10000+10,inf=0x3f3f3f3f;
int n,m,r,in[MAXN],bel[MAXN],vis[MAXN],pre[MAXN];
struct node{
int u,v,k;
};
node side[MAXM];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline int solve(int rt,int n)
{
int res=0;
while(true)
{
for(register int i=1;i<=n;++i)in[i]=inf;
for(register int i=1;i<=m;++i)
if(side[i].u!=side[i].v&&in[side[i].v]>side[i].k)in[side[i].v]=side[i].k,pre[side[i].v]=side[i].u;
for(register int i=1;i<=n;++i)
if(i!=rt&&in[i]==inf)return -1;
int cnt=0;
memset(bel,0,sizeof(bel));
memset(vis,0,sizeof(vis));
in[rt]=0;
for(register int i=1,j;i<=n;++i)
{
res+=in[i];j=i;
while(j!=rt&&vis[j]!=i&&!bel[j])vis[j]=i,j=pre[j];
if(j!=rt&&!bel[j])
{
bel[j]=++cnt;
for(register int k=pre[j];k!=j;k=pre[k])bel[k]=cnt;
}
}
if(!cnt)break;
for(register int i=1;i<=n;++i)
if(!bel[i])bel[i]=++cnt;
for(register int i=1,u,v;i<=m;++i)
{
u=side[i].u,v=side[i].v;
side[i].u=bel[u],side[i].v=bel[v];
if(bel[u]^bel[v])side[i].k-=in[v];
}
n=cnt;
rt=bel[rt];
}
return res;
}
int main()
{
read(n);read(m);read(r);
for(register int i=1;i<=m;++i)
{
int u,v,k;read(u);read(v);read(k);
side[i]=(node){u,v,k};
}
write(solve(r,n),'\n');
return 0;
}

【刷题】洛谷 P4716 【模板】最小树形图的更多相关文章

  1. 洛谷.4897.[模板]最小割树(Dinic)

    题目链接 最小割树模板.具体见:https://www.cnblogs.com/SovietPower/p/9734013.html. ISAP不知为啥T成0分了.. Dinic: //1566ms ...

  2. 洛谷.3381.[模板]最小费用最大流(zkw)

    题目链接 Update:我好像刚知道多路增广就是zkw费用流.. //1314ms 2.66MB 本题优化明显 #include <queue> #include <cstdio&g ...

  3. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  4. 洛谷P4126 [AHOI2009]最小割

    题目:洛谷P4126 [AHOI2009]最小割 思路: 结论题 在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号.显然有id[s]!=id[t](否则s到t有通路,能继续 ...

  5. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

  6. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  7. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  8. 洛谷-P5357-【模板】AC自动机(二次加强版)

    题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...

  9. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

随机推荐

  1. ELKStack入门篇(二)之Nginx、Tomcat、Java日志收集以及TCP收集日志使用

    1.收集Nginx的json格式日志 1.1.Nginx安装 [root@linux-node1 ~]# yum install nginx -y [root@linux-node1 ~]# vim ...

  2. AngularJS中Directive指令系列 - 基本用法

    参考: https://docs.angularjs.org/api/ng/service/$compile http://www.zouyesheng.com/angular.html Direct ...

  3. cogs1439 货车运输

    cogs1439 货车运输 一道傻逼板子题. 边一定在最大生成树上,这个可以用消圈证明 然后kruskal跑一遍再搜一遍再建ST表再跑LCA这题就做完了. RT PS.交上去的代码把Kruskal打成 ...

  4. xgboost算法教程(两种使用方法)

    标签: xgboost 作者:炼己者 ------ 欢迎大家访问我的简书以及我的博客 本博客所有内容以学习.研究和分享为主,如需转载,请联系本人,标明作者和出处,并且是非商业用途,谢谢! ------ ...

  5. R的数据库访问-MySQL

    目录 1 RMySQL 2 环境与安装 3 建立通信 1 RMySQL R作为一款数据分析的工具,,而MySQL是一款常用的开源关系型数据库软件,非常适用于中小型的数据存储,当二者相互结合时才能爆发出 ...

  6. 用php实现简单的自制计算器

    存档: <!DOCTYPE html> <html> <head> <title>PHP实现计算器</title> </head> ...

  7. docker基本的常用命令

  8. hdu2061 Treasure the new start, freshmen!(暴力简单题)

    Treasure the new start, freshmen! Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/3276 ...

  9. Git操作指令

    1.创建版本库 git init 2.把工作区修改过的文件添加到版本库暂存区,点号表示当前目录下所有文件; git add .#查看仓库状态git status 3.把版本库暂存区的文件提交到当前分支 ...

  10. 第三篇 Python关于mysql的API--pymysql模块, mysql事务

    python关于mysql的API--pymysql模块 pymysql是Python中操作MySQL的模块,其使用方法和py2的MySQLdb几乎相同. 模块安装 pip install pymys ...