P2774 方格取数问题
题目背景
none!
题目描述
在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数。现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大。试设计一个满足要求的取数算法。对于给定的方格棋盘,按照取数要求编程找出总和最大的数。
输入输出格式
输入格式:
第 1 行有 2 个正整数 m 和 n,分别表示棋盘的行数和列数。接下来的 m 行,每行有 n 个正整数,表示棋盘方格中的数。
输出格式:
程序运行结束时,将取数的最大总和输出
输入输出样例
3 3
1 2 3
3 2 3
2 3 1
11
说明
m,n<=100
/*Code by 520 -- 8.25*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
#define debug printf("%d %s\n",__LINE__,__FUNCTION__)
using namespace std;
const int N=,inf=,dx[]={,,,-},dy[]={,-,,};
int n,m,s,t,dis[N],to[N],net[N],w[N],h[N],cnt=;
int mp[][],ans; il int id(int x,int y){return (x-)*m+y;} il void add(int u,int v,int c){
to[++cnt]=v,net[cnt]=h[u],w[cnt]=c,h[u]=cnt;
to[++cnt]=u,net[cnt]=h[v],w[cnt]=,h[v]=cnt;
} queue<int>q;
il bool bfs(){
memset(dis,-,sizeof(dis));
q.push(s),dis[s]=;
while(!q.empty()){
RE int u=q.front();q.pop();
for(RE int i=h[u];i;i=net[i])
if(dis[to[i]]==-&&w[i]) dis[to[i]]=dis[u]+,q.push(to[i]);
}
return dis[t]!=-;
} int dfs(int u,int op){
if(u==t)return op;
int flow=,used=;
for(RE int i=h[u];i;i=net[i]){
int v=to[i];
if(dis[to[i]]==dis[u]+&&w[i]){
used=dfs(to[i],min(op,w[i]));
if(!used)continue;
flow+=used,op-=used;
w[i]-=used,w[i^]+=used;
if(!op)break;
}
}
if(!flow) dis[u]=-;
return flow;
} il void init(){
scanf("%d%d",&n,&m),t=n*m+;
For(i,,n) For(j,,m) {
scanf("%d",&mp[i][j]),ans+=mp[i][j];
(i+j)&?add(s,id(i,j),mp[i][j]):add(id(i,j),t,mp[i][j]);
}
For(i,,n) For(j,,m)
if((i+j)&) {
For(k,,){
RE int xx=i+dx[k],yy=j+dy[k];
if(xx>&&xx<=n&&yy>&&yy<=m) add(id(i,j),id(xx,yy),inf);
}
}
while(bfs()) ans-=dfs(s,inf);
cout<<ans;
} int main(){
init();
return ;
}
P2774 方格取数问题的更多相关文章
- P2774 方格取数问题(网络流)
P2774 方格取数问题 emm........仔细一看,这不是最大权闭合子图的题吗! 取一个点$(x,y)$,限制条件是同时取$(x,y+1),(x,y-1),(x+1,y),(x-1,y)$,只不 ...
- 洛谷 P2774 方格取数问题 解题报告
P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...
- P2774 方格取数问题 网络最大流 割
P2774 方格取数问题:https://www.luogu.org/problemnew/show/P2774 题意: 给定一个矩阵,取出不相邻的数字,使得数字的和最大. 思路: 可以把方格分成两个 ...
- P2774 方格取数问题 网络流重温
P2774 方格取数问题 这个题目之前写过一次,现在重温还是感觉有点难,可能之前没有理解透彻. 这个题目要求取一定数量的数,并且这些数在方格里面不能相邻,问取完数之后和最大是多少. 这个很好的用了网络 ...
- P2774 方格取数问题 网络流
题目: P2774 方格取数问题 题目背景 none! 题目描述 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...
- P2774 方格取数问题(最小割)
P2774 方格取数问题 一看题目便知是网络流,但由于无法建图.... 题目直说禁止那些条件,这导致我们直接建图做不到,既然如此,我们这是就要逆向思维,他禁止那些边,我们就连那些边. 我们将棋盘染色, ...
- P2774 方格取数(网络流)
https://www.luogu.com.cn/problem/P2774 在一个有 m×n 个方格的棋盘中,每个方格中有一个正整数. 现要从方格中取数,使任意2个数所在方格没有公共边,且取出的数的 ...
- 洛谷 - P2774 - 方格取数问题 - 二分图最大独立点集 - 最小割
https://www.luogu.org/problemnew/show/P2774 把两个相邻的节点连边,这些边就是要方便最小割割断其他边存在的,容量无穷. 这种类似的问题的话,把二分图的一部分( ...
- [洛谷P2774]方格取数问题
题目大意:给你一个$n\times m$的方格,要求你从中选择一些数,其中没有相邻两个数,使得最后和最大 题解:网络流,最小割,发现相邻的两个点不可以同时选择,进行黑白染色,原点向黑点连一条容量为点权 ...
随机推荐
- HDU 6086 Rikka with String
Rikka with String http://acm.hdu.edu.cn/showproblem.php?pid=6086 题意: 求一个长度为2L的,包含所给定的n的串,并且满足非对称. 分析 ...
- eclipse jetty debug
一. 1, Eeclipse中选择 Run --> External Tools --> External Tools Configurations 然后new一个Program项. ...
- 【JUC源码解析】CountDownLatch
简介 CountDownLatch,是一个同步器,允许一个或多个线程等待,直到一组操作在其他线程中完成. 概述 初始CountDownLatch时,会给定count,await方法会阻塞,直到coun ...
- 【MYSQL备份】利用mysqldump将一个数据库复制到另一个数据库
假设要将服务器A上的数据库test备份到服务器B 1.在服务器B上新建数据库cp_test mysql> create database cp_test; Query OK, row affec ...
- Lua学习笔记(7): 模块
模块 模块就像是c语言工程项目目录里的.h.c文件或外部依赖项,为某一个文件的代码提供依赖,其实就是把工作分成几个模块,方便项目的管理,提高开发效率和维护效率 在Lua中,模块其实就是一个表,实现方式 ...
- JY播放器【QQ音乐破解下载】
今天给大家带来一款神器----JY播放器.可以直接下载QQ音乐的歌曲. 目前已经支持平台(蜻蜓FM.喜马拉雅FM.网易云音乐.QQ音乐) 使用方法: 在网页打开QQ音乐网站找到你要听的歌曲或歌单.复制 ...
- 【视频编解码·学习笔记】4. H.264的码流封装格式 & 提取NAL有效数据
一.码流封装格式简单介绍: H.264的语法元素进行编码后,生成的输出数据都封装为NAL Unit进行传递,多个NAL Unit的数据组合在一起形成总的输出码流.对于不同的应用场景,NAL规定了一种通 ...
- Selenium WebDriver 下 plugin container for firefox has stopped working
用selenium 的webdriver 和 firefox 浏览器做自动化测试,经常会出现 plugin container for firefox has stopped working 如下图所 ...
- 进阶系列(9)——linq
一.揭开linq的神秘面纱(一)概述 LINQ的全称是Language Integrated Query,中文译成“语言集成查询”.LINQ作为一种查询技术,首先要解决数据源的封装,大致使用了三大组 ...
- Traffic Steering for Service Function Chaining
Introduction 目前通过vlan标签来把流量引向对应的sfc 以前的sfc静态(SFs相邻组成SFC),有了sdn之后具有动态性.(SFs不需要彼此相邻.将流量动态地导向所需的SFs.) 流 ...