【BZOJ4524】[Cqoi2016]伪光滑数

Description

若一个大于1的整数M的质因数分解有k项,其最大的质因子为Ak,并且满足Ak^K<=N,Ak<128,我们就称整数M为N-伪光滑数。现在给出N,求所有整数中,第K大的N-伪光滑数。

Input

只有一行,为用空格隔开的整数N和K
2 ≤ N ≤ 10^18, 1 ≤ K ≤ 800000,保证至少有 K 个满足要求的数

Output

只有一行,为一个整数,表示答案。

Sample Input

12345 20

Sample Output

9167

题解:先打表打出前31个质数,然后枚举每个质数作为最大质因子,算出此时最多能有多少项,那么此时的最大值显然=这个质数^项数。我们将其扔到堆中。

然后我们要做的就是每次从堆中取出最大的数,将他的一个质因子变小,然后再扔到队列中去,重复k次。并且我们要保证我们的取法不会出现遗漏和重复。这就是一个套路了。我们试图模拟搜索的过程。在搜索时,假如我们已经取了一些质数,他们的积为val,那么我们可以再取一个val的最小质因子,或者继续考虑下一个更小的质因子。现在我们要模拟这个方法:

我们维护四元组(val,mn,first,second)代表当前的数,最小的质因子编号,最小的质因子次数,次小的质因子次数。那么如果我们从堆中取出一个数,我们可以用一个最小质因子来换一个次小质因子,或者用最小质因子的下一个质数来替换最小质因子。容易发现这样是可以做到不重不漏的。由于每次我们只往堆中扔进去2个数,所以时间复杂度就是$O(Klog_K)$的。(看见那些时间复杂度是$O(31*Klog_K)$的我就想笑~)

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <algorithm>
using namespace std;
typedef long long ll;
int m;
ll n;
int p[]={1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127};//31
struct node
{
ll val;
int mn,lst,sec;
bool operator < (const node &a) const
{
return val<a.val;
}
};
priority_queue<node> q;
int main()
{
scanf("%lld%d",&n,&m);
register node x,y;
register int i,j;
for(i=1;i<=31;i++)
{
ll tmp;
for(tmp=1,j=0;tmp<=n/p[i];j++,tmp*=p[i]);
x.val=tmp,x.mn=i,x.lst=j-1,x.sec=0;
q.push(x);
}
while(--m)
{
x=q.top(),q.pop();
if(x.mn)
{
y.val=x.val/p[x.mn]*p[x.mn-1],y.mn=x.mn-1,y.lst=1,y.sec=x.lst-1;
q.push(y);
}
if(x.sec)
{
y.val=x.val/p[x.mn+1]*p[x.mn],y.mn=x.mn,y.lst=x.lst+1,y.sec=x.sec-1;
q.push(y);
}
}
x=q.top();
printf("%lld",x.val);
return 0;
}

【BZOJ4524】[Cqoi2016]伪光滑数 堆(模拟搜索)的更多相关文章

  1. 【BZOJ-4524】伪光滑数 堆 + 贪心 (暴力) [可持久化可并堆 + DP]

    4524: [Cqoi2016]伪光滑数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 183  Solved: 82[Submit][Status] ...

  2. BZOJ4524 CQOI2016伪光滑数(堆)

    对于每个质数求出其作为最大质因子时最多能有几个质因子,开始时将这些ak1~akmaxk扔进堆.考虑构造方案,使得每次取出最大值后,最大质因子.质因子数均与其相同且恰好比它小的数都在堆里.类似暴搜,对于 ...

  3. BZOJ4524 [Cqoi2016]伪光滑数

    BZOJ上的题面很乱,这里有一个题面. 题解: 正解是可持久化可并堆+DP,可惜我不会... 但暴力也可过这道题. 先在不超过N的前提下,在大根堆里加入每个质数的J次方,1<=j, 然后就可以发 ...

  4. @bzoj - 4524@ [Cqoi2016]伪光滑数

    目录 @description@ @solution@ @version - 1@ @version - 2@ @accepted code@ @version - 1@ @version - 2@ ...

  5. [bzoj4524] [loj#2047] [Cqoi2016] 伪光滑数

    Description 若一个大于 \(1\) 的整数 \(M\) 的质因数分解有 \(k\) 项,其最大的质因子为 \(Ak\) ,并且满足 \(Ak^K \leq N\) , \(Ak<12 ...

  6. [CQOI2016]伪光滑数

    题目描述 若一个大于1的整数M的质因数分解有k项,其最大的质因子为Ak,并且满足Ak^K<=N,Ak<128,我们就称整数M为N-伪 光滑数.现在给出N,求所有整数中,第K大的N-伪光滑数 ...

  7. Bzoj 4524 [Cqoi2016]伪光滑数(堆)

    题面 题解 先筛出$<128$的质数,很少,打个表即可 然后钦定一个质数最大,不断替换即可(丢进大根堆里面,然后取出一个,替换在丢进去即可) 具体来说,设一个四元组$[t,x,y,z]$表示当前 ...

  8. 2021.08.01 P4359 伪光滑数(二叉堆)

    2021.08.01 P4359 伪光滑数(二叉堆) [P4359 CQOI2016]伪光滑数 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 若一个大于 11 的整数 MM ...

  9. Loj 2047 伪光滑数

    Loj 2047 伪光滑数 正解较复杂,但这道题其实可以通过暴力解决. 预处理出 \(128\) 内的所有质数,把 \(n\) 内的 \(prime[i]^j\) 丢进堆中,再尝试对每个数变形,除一个 ...

随机推荐

  1. AJAX 实时读取输入文本(php)

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  2. Vector & ArrayList Hashtable & HashMap ArrayList & LinkedList

    1. Vector & ArrayList 1)  Vector的方法都是同步的(Synchronized),是线程安全的(thread-safe),而ArrayList的方法不是,由于线程的 ...

  3. 机器学习性能评估指标(精确率、召回率、ROC、AUC)

    http://blog.csdn.net/u012089317/article/details/52156514 ,y^)=1nsamples∑i=1nsamples(yi−y^i)2

  4. Xshell和SecureCRT等SSH下使用Tmux及Byobu(解决Byobu被statusline信息面板刷屏问题)

    Vim的vsplit用得爽吧!多命令行模式,同样让你爽得不蛋疼! 下面介绍一下两个终端多控制台软件:Tmux 和 Byobu!本文还是以Xshell为主进行介绍! --------------Tmux ...

  5. jquery -- onchange

    触发onchange 首先页面有一个input标签,并且已绑定onchange事件,如: 1 <input type="text" onchange="consol ...

  6. 不错的源码演示:admin5源码

    admin5源码官网:http://down.admin5.com/ 集资讯,源码,字体,itchat于一体的网站,可以下载喔! 实际项目中可以用得到.

  7. Sharepoint 2013 Workflow Error

    问题: (1)提示“reload the page and then start the workflow”错误 (2)提示“Unable to properly communicate with t ...

  8. 转:windows 下 netsh 实现 端口映射(端口转发)

    本文转自:本文出自 “httpyuntianjxxll.spac..” 博客,请务必保留此出处http://333234.blog.51cto.com/323234/1135361 -----hapr ...

  9. m_pRecordset->Open

    结果:

  10. 总结一下前端面试题之Html和CSS

    总结一下关于前端的面试题,今天我们分享关于Html和CSS部分的 面试 (1) 1. 常用那几种浏览器测试?有哪些内核(Layout Engine)? 2. 说下行内元素和块级元素的区别?行内块元素的 ...