POJ 1180 Batch Scheduling
BTW:
刚在图书馆借了本算法艺术与信息学竞赛. 我多次有买这本书的冲动, 但每次在试看之后就放弃了, 倒不是因为书太难, 而是写的实在是太差. 大家对这本书的评价很高, 我觉得多是因为书的内容, 而作者表达内容与思想的方式真是令我恼火. programmer 写博客, 尤其是技术博客, 往往不去考虑读者的起点, 结果博客都成了自己给自己看的地方. 报纸杂志都属于通俗易懂的材料, 不需要假定读者的水平如何. 而写书, 则必须要好好考虑读者的水平. 单说算法书, 全世界的算法书加起来也得有个上千本, 但是能称为经典的屈指可数, 而经典书的作者在写书时必然仔细考虑了所面向的读者, 读者的水平和读者所处的上下文. 国人常说, 只可意会不可言传, 我觉得这是表达能力不足的借口. 书的目的便是要省去或起码减少 "悟" 所需要的时间. 我读这道题时最大的感受是作者东一句话西一句话, 以自己的思路和上下文在写书. 需要我花大量的时间去悟. 花了半小时, 知道一段话的意思, 恍然大悟原来如此 --- I hate that. 黑书内容虽好, 写的太差
思路:
1. dp[i] 表示从第 i 个任务开始, 到最后一个任务结束所需的最小总代价
2. dp[i] = min{ dp[j] +w(i,j)}, j > i} w(i, j) = (S + sumT(i) - sumT(j)) * sumF(i)
状态转移方程表示求解 dp[i] 的最优解时, 枚举在 j 处切一刀的所有情况, 即 {i,j之间的任务}U{dp[j]的最优解}, 选取最优的 j
另外, w(i, j) = (S + sumT(i) - sumT(j)) * sumF(i) 这个式子的右端乘上的是 sumF(i) 而不是 sumF(i)-sumF(j), 这是因为预先把 dp[j] 的代价计算了, 这样, "在状态转移方程时就可以每次看作从时间 0 开始工作了", 就不需考虑 dp[i] 是什么时候完成的任务了
比如在给定的测试用例中
5个任务的划分为5个组, 每组一个任务
组1 : 完成时间 0+1+1=2, 代价 3, 耗费 2 * 3 = 6
组2 : 完成时间 +1+3=6, 代价 2, 耗费 6 * 3 = 18
组3 : 完成时间 +1+4=11, 代价 3, 总耗费 11 * 3 = 33
组4 : 完成时间 +1+2=14, 代价 3, 总耗费 14 * 3 = 42
组5 : 完成时间 +1+1=16, 代价 4, 总耗费 16 * 4 = 64
假定 {1,2} {3,4,5} 分成两组, 前两组的完成时间为 6, 在3,4,5组减去(S + sumT(i) - sumT(j)) * sumF(i), 相当于
6+1+4 ---> 0+1+4
11+1+2--->5+1+2
14+1+1--->11+1+1
从 3 的视角来看, 组3似乎是从时间 0 开始计算的
3. 从 (2) 知, 是倒推的过程
总结:
1. 顺序切割的动态规划解法
2. 计算 w[i,j] 的时候, 需要非常小心
代码:
没看懂优化原理, o(n*n) 的 MLE + TLE 代码
#include <iostream>
using namespace std; const int MAXN = 10010;
int N, S;
int t[MAXN], f[MAXN];
int st[MAXN], sf[MAXN];
int w[MAXN][MAXN];
int dp[MAXN]; void pre_process() {
memset(st, 0, sizeof(st));
memset(sf, 0, sizeof(sf));
for(int i = N; i > 0 ; i --) {
st[i] = t[i] + st[i+1];
sf[i] = f[i] + sf[i+1];
} memset(w, 0, sizeof(w));
for(int i = 1; i <= N; i ++) {
for(int j = i+1; j <= N; j ++) {
w[i][j] = (S + st[i]-st[j])*sf[i];
}
} memset(dp, 0, sizeof(dp));
for(int i = N; i > 0; i --) {
dp[i] = (S+st[i])*sf[i];
} }
int mainFunc() { for(int i = N-1; i > 0; i --) {
for(int j = i+1; j <= N; j ++) {
dp[i] = min(dp[i], dp[j]+w[i][j]);
}
}
return dp[1];
}
int main() {
//freopen("E:\\Copy\\ACM\\poj\\1180\\in.txt", "r", stdin);
while(cin >> N >> S) {
for(int i = 1; i <= N; i ++) {
scanf("%d%d", &t[i], &f[i]);
}
pre_process();
// mainFunc
cout << mainFunc() << endl;
}
return 0;
}
POJ 1180 Batch Scheduling的更多相关文章
- poj 1180 Batch Scheduling (斜率优化)
Batch Scheduling \(solution:\) 这应该是斜率优化中最经典的一道题目,虽然之前已经写过一道 \(catstransport\) 的题解了,但还是来回顾一下吧,这道题其实较那 ...
- POJ 1180 - Batch Scheduling - [斜率DP]
题目链接:http://poj.org/problem?id=1180 Description There is a sequence of N jobs to be processed on one ...
- POJ 1180 Batch Scheduling(斜率优化DP)
[题目链接] http://poj.org/problem?id=1180 [题目大意] N个任务排成一个序列在一台机器上等待完成(顺序不得改变), 这N个任务被分成若干批,每批包含相邻的若干任务. ...
- POJ 1180 Batch Scheduling (dp,双端队列)
#include <iostream> using namespace std; + ; int S, N; int T[MAX_N], F[MAX_N]; int sum_F[MAX_N ...
- poj 1180:Batch Scheduling【斜率优化dp】
我会斜率优化了!这篇讲的超级棒https://blog.csdn.net/shiyongyang/article/details/78299894?readlog 首先列个n方递推,设sf是f的前缀和 ...
- [POJ1180&POJ3709]Batch Scheduling&K-Anonymous Sequence 斜率优化DP
POJ1180 Batch Scheduling Description There is a sequence of N jobs to be processed on one machine. T ...
- POJ 1180 斜率优化DP(单调队列)
Batch Scheduling Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4347 Accepted: 1992 ...
- 任务调度分配题两道 POJ 1973 POJ 1180(斜率优化复习)
POJ 1973 这道题以前做过的.今儿重做一次.由于每个程序员要么做A,要么做B,可以联想到0/1背包(谢谢N巨).这样,可以设状态 dp[i][j]为i个程序员做j个A项目同时,最多可做多少个B项 ...
- POJ1180 Batch Scheduling 解题报告(斜率优化)
题目链接:http://poj.org/problem?id=1180 题目描述: There is a sequence of N jobs to be processed on one machi ...
随机推荐
- [转]编写 android.mk 中 LOCAL_C_INCLUDES 的技巧
看原文请移步:编写 android.mk 中 LOCAL_C_INCLUDES 的技巧 在编写android.mk的过程中,免不了要修改LOCAL_C_INCLUDES来设置头文件的include目录 ...
- [转帖]cocos2D-X源码分析之从cocos2D-X学习OpenGL(2)----QUAD_COMMAND
原文:cocos2D-X源码分析之从cocos2D-X学习OpenGL(2)----QUAD_COMMAND 上一篇文章介绍了cocos2d-x的基本渲染结构,这篇顺着之前的渲染结构介绍渲染命令QUA ...
- Modbus 通讯协议
摘要 工业控制已从单机控制走向集中监控.集散控制,如今已进入网络时代,工业控制器连网也为网络管理提供了方便.Modbus就是工业控制器的网络协议中的一种. 关键词 Modbus协议,串行通信,LRC校 ...
- 旋转加载loading和点点加载loadingdemo
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- rm: cannot remove `dir': Device or resource busy解决办法
使用df查看系统发现: [ops@bs038 cm-5.4.0]$ df -hFilesystem Size Used Avail Use% Mounted on/dev/sda3 1.1T 200G ...
- poj2018(高精度二分+dp)
题意:给你n个数,要你在这n个数里面找到一些连续的数,这些数的数量大于等于m,并且他们的平均值在这n个数里面是最大的....... 思路:先把n个数的最大最小值确定,然后二分枚举平均值,对于每一个连续 ...
- note,路况,计算
note,路况,计算
- pthread_once函数的简单示例
/*一次性初始化 int pthread_once(pthread_once_t *once_control, void (*init_routine) (void)) 本函数使用初值为PTHREAD ...
- C语言实现---学生成绩管理系统
C语言实现了学生成绩管理系统,可以进行学生成绩的增加,删除,更新,查询,计算和展示. 完整代码如下: #include<stdio.h> #include<stdlib.h> ...
- linux设置开机服务自动启动/关闭自动启动命令
linux设置开机服务自动启动/关闭自动启动命令 2012-02-06 15:13 [root@localhost ~]# chkconfig --list 显示开机可以自动启动的服务[roo ...