MapReduce调度与执行原理系列文章
转自:http://blog.csdn.net/jaytalent?viewmode=contents
MapReduce调度与执行原理系列文章
前言:本文旨在理清在Hadoop中一个MapReduce作业(Job)在提交到框架后的整个生命周期过程,权作总结和日后参考,如有问题,请不吝赐教。本文不涉及Hadoop的架构设计,如有兴趣请参考相关书籍和文献。在梳理过程中,我对一些感兴趣的源码也会逐行研究学习,以期强化基础。
作者:Jaytalent
开始日期:2013年9月9日参考资料:【1】《Hadoop技术内幕--深入解析MapReduce架构设计与实现原理》董西成【2】Hadoop 1.0.0 源码
- Job job = new Job(conf, "word count");
- job.setJarByClass(WordCount.class);
- job.setMapperClass(TokenizerMapper.class);
- job.setCombinerClass(IntSumReducer.class);
- job.setReducerClass(IntSumReducer.class);
- job.setOutputKeyClass(Text.class);
- job.setOutputValueClass(IntWritable.class);
- FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
- FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
- System.exit(job.waitForCompletion(true) ? 0 : 1);
- JobID jobId = jobSubmitClient.getNewJobId();
作业ID时从JobTracker获取的,这是一次RPC调用,方法为getNewJobId,定义在JobSubmissionProtocol接口。
- private JobSubmissionProtocol jobSubmitClient;
- /**
- * Allocate a name for the job.
- * @return a unique job name for submitting jobs.
- * @throws IOException
- */
- public JobID getNewJobId() throws IOException;
用户使用该协议通过JobTracker提交作业,查看作业状态等。
- copyAndConfigureFiles(jobCopy, submitJobDir);
在配置了提交副本数(mapred.submit.replication,默认为10)等信息后,主要代码分析如下(为了清晰起见,省略了一些日志和异常处理):
- // Retrieve command line arguments placed into the JobConf
- // by GenericOptionsParser.
- String files = job.get("tmpfiles");
- String libjars = job.get("tmpjars");
- String archives = job.get("tmparchives");
首先,从配置中获取不同类型文件的名称和路径,这些配置在作业提交时从命令行(Hadoop Shell)指定。files表示作业依赖的普通文件,比如文本文件;libjars表示应用程序依赖的第三方jar包;archives表示应用程序使用的多个文件打包而成的压缩文件。
- // Create a number of filenames in the JobTracker's fs namespace
- FileSystem fs = submitJobDir.getFileSystem(job);
- submitJobDir = fs.makeQualified(submitJobDir);
- FsPermission mapredSysPerms = new FsPermission(JobSubmissionFiles.JOB_DIR_PERMISSION);
- FileSystem.mkdirs(fs, submitJobDir, mapredSysPerms);
- Path filesDir = JobSubmissionFiles.getJobDistCacheFiles(submitJobDir);
- Path archivesDir = JobSubmissionFiles.getJobDistCacheArchives(submitJobDir);
- Path libjarsDir = JobSubmissionFiles.getJobDistCacheLibjars(submitJobDir);
接下来,在JobTracker的文件系统(通常为HDFS)的命名空间创建一系列文件路径名,其中包括前述三种文件类型。
有了路径名后,在HDFS上创建路径并将这些文件拷贝到对应的目录中,代码如下:
- // add all the command line files/ jars and archive
- // first copy them to jobtrackers filesystem
- if (files != null) {
- FileSystem.mkdirs(fs, filesDir, mapredSysPerms);
- String[] fileArr = files.split(",");
- for (String tmpFile: fileArr) {
- URI tmpURI;
- tmpURI = new URI(tmpFile);
- Path tmp = new Path(tmpURI);
- Path newPath = copyRemoteFiles(fs,filesDir, tmp, job, replication);
- URI pathURI = getPathURI(newPath, tmpURI.getFragment());
- DistributedCache.addCacheFile(pathURI, job);
- DistributedCache.createSymlink(job);
- }
- }
- if (libjars != null) {
- FileSystem.mkdirs(fs, libjarsDir, mapredSysPerms);
- String[] libjarsArr = libjars.split(",");
- for (String tmpjars: libjarsArr) {
- Path tmp = new Path(tmpjars);
- Path newPath = copyRemoteFiles(fs, libjarsDir, tmp, job, replication);
- DistributedCache.addArchiveToClassPath
- (new Path(newPath.toUri().getPath()), job, fs);
- }
- }
- if (archives != null) {
- FileSystem.mkdirs(fs, archivesDir, mapredSysPerms);
- String[] archivesArr = archives.split(",");
- for (String tmpArchives: archivesArr) {
- URI tmpURI;
- tmpURI = new URI(tmpArchives);
- Path tmp = new Path(tmpURI);
- Path newPath = copyRemoteFiles(fs, archivesDir, tmp, job, replication);
- URI pathURI = getPathURI(newPath, tmpURI.getFragment());
- DistributedCache.addCacheArchive(pathURI, job);
- DistributedCache.createSymlink(job);
- }
注意,MapReduce作业文件的上传和下载是通过DistributedCache工具完成的,它是一个数据分发工具。用户指定的文件会被分发到各个TaskTracker上以运行Task。这里暂不涉及该工具的细节,留待日后讨论。
- String originalJarPath = job.getJar();
- if (originalJarPath != null) { // copy jar to JobTracker's fs
- // use jar name if job is not named.
- if ("".equals(job.getJobName())){
- job.setJobName(new Path(originalJarPath).getName());
- }
- Path submitJarFile = JobSubmissionFiles.getJobJar(submitJobDir);
- job.setJar(submitJarFile.toString());
- fs.copyFromLocalFile(new Path(originalJarPath), submitJarFile);
- fs.setReplication(submitJarFile, replication);
- fs.setPermission(submitJarFile,
- new FsPermission(JobSubmissionFiles.JOB_FILE_PERMISSION));
- }
注意,在每次上传一种类型的文件后,都会将这种文件的路径配置到JobConf对象中,具体的工作由
- DistributedCache.addCacheFile(pathURI, job);
- DistributedCache.addArchiveToClassPath(new Path(newPath.toUri().getPath()), job, fs);
- DistributedCache.addCacheArchive(pathURI, job);
- job.setJar(submitJarFile.toString());
这四行代码完成。顺便提一句,Path类Hadoop文件系统在java.net.URI的基础上抽象了文件系统中的路径【3】。Java的File类和URL类分别抽象了不同的事物,Path可以说将二者统一起来。
3. 生成InputSplit文件
- // Create the splits for the job
- FileSystem fs = submitJobDir.getFileSystem(jobCopy);
- int maps = writeSplits(context, submitJobDir);
- jobCopy.setNumMapTasks(maps);
jobCopy是一个JobConf对象。其中,writeSplits方法会实际调用InputSplit.getSplits方法生成splits信息,并将splits原始信息和元信息写入HDFS对应的目录和文件中。有关split的生成过程日后研究,这里不展开了。最后,将作业对应的JobConf对象以XML配置文件形式写入到HDFS中:
- // Write job file to JobTracker's fs
- FSDataOutputStream out =
- FileSystem.create(fs, submitJobFile,
- new FsPermission(JobSubmissionFiles.JOB_FILE_PERMISSION));
- try {
- jobCopy.writeXml(out);
- } finally {
- out.close();
- }
至此,作业文件上传才算正式完毕。
接下来,作业将被提交到JobTracker,请关注下篇文章:
MapReduce调度与执行原理系列文章的更多相关文章
- MapReduce调度与执行原理之任务调度
前言 :本文旨在理清在Hadoop中一个MapReduce作业(Job)在提交到框架后的整个生命周期过程,权作总结和日后参考,如有问题,请不吝赐教.本文不涉及Hadoop的架构设计,如有兴趣请参考相关 ...
- MapReduce调度与执行原理之作业提交
前言 :本文旨在理清在Hadoop中一个MapReduce作业(Job)在提交到框架后的整个生命周期过程,权作总结和日后参考,如有问题,请不吝赐教.本文不涉及Hadoop的架构设计,如有兴趣请参考相关 ...
- MapReduce调度与执行原理之作业初始化
前言 :本文旨在理清在Hadoop中一个MapReduce作业(Job)在提交到框架后的整个生命周期过程,权作总结和日后参考,如有问题,请不吝赐教.本文不涉及Hadoop的架构设计,如有兴趣请参考相关 ...
- MapReduce调度与执行原理之任务调度(续)
前言 :本文旨在理清在Hadoop中一个MapReduce作业(Job)在提交到框架后的整个生命周期过程,权作总结和日后参考,如有问题,请不吝赐教.本文不涉及Hadoop的架构设计,如有兴趣请参考相关 ...
- FastDFS原理系列文章
FastDFS原理系列文章 基于FastDFS 5.03/5.04 2014-12-19 一.概述 FastDFS文档极少,仅仅能找到一些宽泛的架构文档,以及ChinaUnix论坛上作者对网友提问的一 ...
- Consul实现原理系列文章3: Consul的整体架构
工作中用到了Consul来做服务发现,之后一段时间里,我会陆续发一些文章来讲述Consul实现原理.在前几篇文章介绍完了Consul用到的两个关键性东西Raft和Gossip之后,这篇文章会讲述Con ...
- Consul实现原理系列文章2: 用Gossip来做集群成员管理和消息广播
工作中用到了Consul来做服务发现,之后一段时间里,我会陆续发一些文章来讲述Consul实现原理.这篇文章会讲述Consul是如何使用Gossip来做集群成员管理和消息广播的. Consul使用Go ...
- Consul实现原理系列文章1: 用Raft来实现分布式一致性
工作中用到了Consul来做服务发现,之后一段时间里,我会陆续发一些文章来讲述Consul实现原理.在前一篇文章中,我介绍了Raft算法.这篇文章会讲讲Consul是如何使用Raft算法来实现分布式一 ...
- JSP的执行原理、JSP的内置对象、四大作用域解析、MVC模式理解>从零开始学JAVA系列
目录 JSP的执行原理.JSP的内置对象.四大作用域解析.MVC模式理解 JSP的执行原理 这里拿一个小例子来解析JSP是如何被访问到的 首先将该项目部署到tomcat,并且通过tomcat启动 通过 ...
随机推荐
- 关于c语言内存分配,malloc,free,和段错误,内存泄露
1. C语言的函数malloc和free (1) 函数malloc和free在头文件<stdlib.h>中的原型及参数 void * malloc(size_t size ...
- jquery 事件注冊 与反复事件处理
<!doctype html> <html lang="us"> <head> <meta charset="utf-8&quo ...
- Python count() 方法
描述 count() 方法用于统计字符串中某个子字符串出现的次数,可选参数为开始搜索与结束搜索的位置索引. 语法 count() 方法语法: S.count(sub[,start=0[,end=len ...
- pandas 按照某一列进行排序
pandas排序的方法有很多,sort_values表示根据某一列排序 pd.sort_values("xxx",inplace=True) 表示pd按照xxx这个字段排序,inp ...
- 机器学习(6): 层次聚类 hierarchical clustering
假设有N个待聚类的样本,对于层次聚类来说,步骤: 1.(初始化)把每个样本归为一类,计算每两个类之间的距离,也就是样本与样本之间的相似度: 2.寻找各个类之间最近的两个类, ...
- 问题解决:在此页上的ActiveX控件
打开什么美图秀秀就会弹出windows安全警告?网易闪电邮每打开一封邮件就会出现安全警告?这个对话框无论你点是否,都会再次出现!! 网上的方法教你改ie设置 教你改UAC 通通不好用!!!重装系统也不 ...
- LaTeX 编辑软件WinEdt使用简要介绍
LaTeX 编辑软件WinEdt使用简要介绍 LaTeX 的起源非常牛逼,有一套书大家可能听说过<计算机程序设计艺术>,写了好几本.当然能在计算机方面写上艺术俩字的书恐怕不是我们一般人 ...
- centos 最小化安装后要做的事情
首先是配置网络 [root@bao-work-4 ~]# vi /etc/sysconfig/network-scripts/ifcfg-eth0 IPADDR=10.230.200.22GATEWA ...
- jquery资源
一.时间日期: 倒计时jQuery插件 Countdown :http://code.google.com/p/jquery-countdown/ 使用案例:http://www.tieyou.com ...
- Spring Cloud构建微服务架构(三)断路器
在分布式架构中,断路器模式的作用也是类似的,当某个服务单元发生故障(类似用电器发生短路)之后,通过断路器的故障监控(类似熔断保险丝),向调用方返回一个错误响应,而不是长时间的等待.这样就不会使得线程因 ...