[NOI2016 D2T1]区间
题目大意:在数轴上有$n$个闭区间$[l_1,r_1],[l_2,r_2],...,[l_n,r_n]$。现在要从中选出 $m$ 个区间,使得这 $m$ 个区间共同包含至少一个位置。输出被选中的最长区间长度减去被选中的最短区间长度,若多解,输出最小的一个
题解:把区间按长度排序,然后把左右端点离散化,双指针扫一下,线段树维护一下有没有点被覆盖$ \geq m$次即可
卡点:1.因为有$2\times n$个点,所以线段树开小了一倍
C++ Code:
#include <cstdio>
#include <algorithm>
#define maxn 500010
using namespace std;
const int inf = 0x3f3f3f3f;
int n, m, tot, M, ans;
int p[maxn << 1];
struct interval {
int l, r, len;
bool operator < (const interval & b) const {return len < b.len;}
} s[maxn];
inline int min(int a, int b) {return a < b ? a : b;}
inline int max(int a, int b) {return a > b ? a : b;}
int V[maxn << 3], cov[maxn << 3];
void pushdown(int rt) {
int &tmp = cov[rt];
V[rt << 1] += tmp;
V[rt << 1 | 1] += tmp;
cov[rt << 1] += tmp;
cov[rt << 1 | 1] += tmp;
tmp = 0;
}
void add(int rt, int l, int r, int L, int R, int num = 1) {
if (L <= l && R >= r) {
V[rt] += num;
cov[rt] += num;
return ;
}
if (cov[rt]) pushdown(rt);
int mid = l + r >> 1;
if (L <= mid) add(rt << 1, l, mid, L, R, num);
if (R > mid) add(rt << 1 | 1, mid + 1, r, L, R, num);
V[rt] = max(V[rt << 1], V[rt << 1 | 1]);
}
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%d%d", &s[i].l, &s[i].r);
s[i].len = s[i].r - s[i].l;
p[i - 1 << 1 | 1] = s[i].l;
p[i << 1] = s[i].r;
}
tot = n << 1;
sort(p + 1, p + tot + 1);
sort(s + 1, s + n + 1);
M = lower_bound(p + 1, p + tot + 1, p[tot]) - p;
for (int i = 1; i <= n; i++) {
s[i].l = lower_bound(p + 1, p + tot + 1, s[i].l) - p;
s[i].r = lower_bound(p + 1, p + tot + 1, s[i].r) - p;
}
int L = 1;
ans = inf;
for (int i = 1; i <= n; i++) {
add(1, 1, M, s[i].l, s[i].r);
while (V[1] >= m && L <= i) {
ans = min(ans, s[i].len - s[L].len);
add(1, 1, M, s[L].l, s[L].r, -1);
L++;
}
}
printf("%d\n", (ans == inf) ? -1 : ans);
return 0;
}
[NOI2016 D2T1]区间的更多相关文章
- 【BZOJ4653】【NOI2016】区间(线段树)
[BZOJ4653][NOI2016]区间(线段树) 题面 BZOJ 题解 \(NOI\)良心送分题?? 既然是最大长度减去最小长度 莫名想到那道反复减边求最小生成树 从而求出最小的比值 所以这题的套 ...
- 「NOI2016」区间 解题报告
「NOI2016」区间 最近思维好僵硬啊... 一上来就觉得先把区间拆成两个端点进行差分,然后扫描位置序列,在每个位置维护答案,用数据结构维护当前位置的区间序列,但是不会维护. 于是想研究性质,想到为 ...
- 【NOI2016】区间 题解
题目大意: 有n个区间,当有m个区间有公共部分时,求m个区间长度的最大值与最小值之差的最小值. 思路: 按区间的长度从小到大排序,可知连续的几个区间最优,则用两个指针指其头尾,线性扫描,再用线段树区间 ...
- 【BZOJ4653】【NOI2016】区间 线段树
题目大意 数轴上有\(n\)个闭区间\([l_1,r_1],[l_2,r_2],\ldots,[l_n,r_n]\),你要选出\(m\)个区间,使得存在一个\(x\),对于每个选出的区间\([l_i, ...
- 【NOI2016】区间
目链接:http://uoj.ac/problem/222 在数轴上有 n 个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m 个区间共同包含至少 ...
- UOJ222 【NOI2016】区间
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- LOJ#2086. 「NOI2016」区间
$n \leq 500000$个区间,从中挑出一些,使得至少有一个点被$m$个选中区间包含,且选中区间长度的极差最小. 区间题死脑筋晚期:把区间按左端点排序,然后右端点用个优先队列来弹,然后需要维护下 ...
- 「NOI2016」区间
传送门 Luogu 解题思路 对于选出的区间,我们可以直接用线段树维护区间内单点被覆盖次数最大值. 那么解题重心便落在了选取方式上. 为了让最大值最小,考虑尺取,不能二分,降低效率而且不好写. 先将区 ...
- 【NOI2016】区间 题解(线段树+尺取法)
题目链接 题目大意:给定$n$个区间$[l_i,r_i]$,选出$m$个区间使它们有一个共同的位置$x$,且使它们产生的费用最小.求最小费用.费用定义为最长的区间长度减去最短区间长度. ------- ...
随机推荐
- java程序执行命令行,解锁数据库表
有些表锁的时间长或其他原因,在plsql中不能解锁,只能用命令行解锁. 有些功能跨平台系统的交互偶尔会锁表,就需要自动解锁. 下面是解锁的代码: package com.lg.BreakOracleU ...
- 使用NPOI快速导出导入Excel
这两天做项目需要导入导出EXCEL,是基于NPOI的封装,设计思路是使用DataTable,然后导出一个和DataTable一模一样的Excel表出来 github地址:https://github. ...
- Java源码解析——集合框架(三)——Vector
Vector源码解析 首先说一下Vector和ArrayList的区别: (1) Vector的所有方法都是有synchronized关键字的,即每一个方法都是同步的,所以在使用起来效率会非常低,但是 ...
- thinkphp5阿里大于短信接口
function autumn_sendsms($tel,$stype){ $pd_go=true; if($tel==''){ $msg='手机号不能为空'; $pd_go=false; } if( ...
- 微信小程序-通知公告滚动提示
wxml如下: <view class='scroll_view_border'> <view class="srcoll_view" bindtap=" ...
- 第一天的题目 简单A+B 植树问题 多项式的值
#include<stdio.h> int main() { int a=0;b=0; scanf("%d%d",&a,&b); printf(&quo ...
- 笔记-python-常见特殊变量
笔记-python-常见特殊变量 类似__xx,以双下划线开头的实例变量名,就变成了一个私有变量(private),只有内部可以访问,外部不能访问: 类似__xx__,以双下划线开头,并且以双下划线结 ...
- 【转载】[Elasticsearch]ES入门
传送门:http://www.cnblogs.com/xing901022 ES即简单又复杂,你可以快速的实现全文检索,又需要了解复杂的REST API.本篇就通过一些简单的搜索命令,帮助你理解ES的 ...
- 1139: [POI2009]Wie
1139: [POI2009]Wie https://www.lydsy.com/JudgeOnline/problem.php?id=1139 分析: Dijkstra.状压最短路,dis[i][j ...
- echarts的pie图中,各区块颜色的调整
今天在学习使用echarts生成各种图表. 然后在使用pie图时出现我无论怎么更改代码中的颜色,pie图中各块的颜色都十分相近,几乎没法区别块与块之间的区别,如下图: 在下图中,除了其中一块的是红色的 ...