【bzoj2935】【Poi1999】原始生物

 

2935: [Poi1999]原始生物

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 145  Solved: 71
[Submit][Status][Discuss]

Description

原始生物的遗传密码是一个自然数的序列K=(a1,...,an)。原始生物的特征是指在遗传密码中连续出现的数对(l,r),即存在自然数i使得l=ai且r=ai+1。在原始生物的遗传密码中不存在(p,p)形式的特征。
求解任务:
请设计一个程序:
       ·读入一系列的特征。
       ·计算包含这些特征的最短的遗传密码。
       ·将结果输出

Input

 第一行是一个整数n ,表示特征的总数。在接下来的n行里,每行都是一对由空格分隔的自然数l 和r ,1 <= l,r <= 1000。数对(l, r)是原始生物的特征之一。输入文件中的特征不会有重复。

Output

唯一一行应该包含一个整数,等于包含了PIE.IN中所有特征的遗传密码的最小长度。

Sample Input

12
2 3
3 9
9 6
8 5
5 7
7 6
4 5
5 1
1 4
4 2
2 8
8 6

Sample Output

15

注:
PIE.IN中的所有特征都包含在以下遗传密码中:
(8, 5, 1, 4, 2, 3, 9, 6, 4, 5, 7, 6, 2, 8, 6)

 
 #include<cstdio>
//#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define INF 0x3f3f3f3f
#define re register
#define Ii inline int
#define Il inline long long
#define Iv inline void
#define Ib inline bool
#define Id inline double
#define ll long long
#define Fill(a,b) memset(a,b,sizeof(a))
#define R(a,b,c) for(register int a=b;a<=c;++a)
#define nR(a,b,c) for(register int a=b;a>=c;--a)
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define Cmin(a,b) ((a)=(a)<(b)?(a):(b))
#define Cmax(a,b) ((a)=(a)>(b)?(a):(b))
#define abs(a) ((a)>0?(a):-(a))
#define D_e(x) printf("&__ %d __&\n",x)
#define D_e_Line printf("-----------------\n")
using namespace std;
const int N=;
Ii read(){
int s=,f=;char c;
for(c=getchar();c>''||c<'';c=getchar())if(c=='-')f=-;
while(c>=''&&c<='')s=s*+(c^''),c=getchar();
return s*f;
}
Iv print(int x){
if(x<)putchar('-'),x=-x;
if(x>)print(x/);
putchar(x%^'');
}
int fa[N],deg[N],vis[N],tag[N];
Ii Find(int x){
return x==fa[x]?x:fa[x]=Find(fa[x]);
}
int main(){
int m=read(),n=;
R(i,,n)fa[i]=i;//Father
R(i,,m){
int u=read(),v=read();
++deg[u],--deg[v],//Out- In
vis[u]=,vis[v]=,
fa[Find(u)]=Find(v);//Union
}
int sum=;
R(i,,n)
if(deg[i])
tag[Find(i)]=,//In the same tag
sum+=abs(deg[i]);
int k=;
R(i,,n)
if(vis[i]&&Find(i)==i&&!tag[i])
++k;//Totol tags
print(k+(sum>>)+m);
return ;
}
/*
5
1 3
3 4
2 4
4 7
4 6 6
1 2
1 3
1 6
2 3
3 4
2 5
*/

BZOJ 2935/ Poi 1999 原始生物的更多相关文章

  1. bzoj 2936 [Poi 1999] 降水 - 并查集

    题目传送门 需要root权限的传送门 题目大意 有一个$n\times m$的网格图,每一格都有一个高度.一次降雨过后问最多能积多少水. 考虑算每一高度能储存的水的量. 如果小于等于这个高度的格子和边 ...

  2. bzoj 2935 [Poi1999]原始生物——欧拉回路思路!

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2935 有向图用最小的路径(==总点数最少)覆盖所有边. 完了完了我居然连1999年的题都做不 ...

  3. 【刷题】BZOJ 2935 [Poi1999]原始生物

    Description 原始生物的遗传密码是一个自然数的序列K=(a1,...,an).原始生物的特征是指在遗传密码中连续出现的数对(l,r),即存在自然数i使得l=ai且r=ai+1.在原始生物的遗 ...

  4. [BZOJ 3747] [POI 2015] Kinoman【线段树】

    Problem Link : BZOJ 3747 题解:ZYF-ZYF 神犇的题解 解题的大致思路是,当区间的右端点向右移动一格时,只有两个区间的左端点对应的答案发生了变化. 从 f[i] + 1 到 ...

  5. [BZOJ 2083] [POI 2010] Intelligence test

    Description 霸中智力测试机构的一项工作就是按照一定的规则删除一个序列的数字,得到一个确定的数列.Lyx很渴望成为霸中智力测试机构的主管,但是他在这个工作上做的并不好,俗话说熟能生巧,他打算 ...

  6. bzoj 1112 poi 2008 砖块

    这滞胀题调了两天了... 好愚蠢的错误啊... 其实这道题思维比较简单,就是利用treap进行维护(有人说线段树好写,表示treap真心很模板) 就是枚举所有长度为k的区间,查出中位数,计算代价即可. ...

  7. BZOJ 4726 POI 2017 Sabota? 树形DP

    4726: [POI2017]Sabota? Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 128  Solved ...

  8. [BZOJ 1124][POI 2008] 枪战 Maf

    1124: [POI2008]枪战Maf Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 659  Solved: 259[Submit][Status ...

  9. bzoj 3872 [ Poi 2014 ] Ant colony —— 二分

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3872 从食蚁兽所在的边向叶节点推,会得到一个渐渐放大的取值区间,在叶子节点上二分有几群蚂蚁符 ...

随机推荐

  1. 基于Nginx实现集群原理

    1)安装Nginx 2)配置多个Tomcat,并修改端口号(两个端口号不一样即可) 3)在Nginx的Nginx.conf添加如下配置:

  2. c语言实践 1/1+1/2+1/3+1/4+...+1/n

    给定一个n求这个分式的和. int n = 1; float sum = 0; float frac = 0; int i = 1; scanf_s("%d",&n); w ...

  3. Luogu 3242 [HNOI2015]接水果

    BZOJ4009 权限题 真的不想再写一遍了 大佬blog 假设有果实$(x, y)$,询问$(a, b)$,用$st_i$表示$i$的$dfs$序,用$ed_i$表示所有$i$的子树搜完的$dfs$ ...

  4. python3--生成器并行运算

    # Auther: Aaron Fan """def consumer(name): print("%s 准备吃包子啦!" % name) while ...

  5. Python基础 之 变量、用户交互、if条件语句、while循环语句、编码、逻辑运算

    一.Python介绍 Python 崇尚优美.清晰.简单 Python是一门动态解释型的强制性定义的语言. 二.编译型和解释型的区别 编译型:一次性将所有与程序编译成二进制文件. 缺点:开发效率低,不 ...

  6. css总结7:盒子模型理解

    1 盒子模型 1.1盒子模型的盒子:     以博客园页面为例: 1.2盒子内部构造:边框(border).内容(content).填充(padding).边界(margin)---CSS盒子模式都具 ...

  7. 生日蜡烛——第七届蓝桥杯C语言B组(省赛)第二题

    原创 生日蜡烛 某君从某年开始每年都举办一次生日party,并且每次都要吹熄与年龄相同根数的蜡烛. 现在算起来,他一共吹熄了236根蜡烛. 请问,他从多少岁开始过生日party的? 请填写他开始过生日 ...

  8. 软工作业WordCount

    github项目传送门:https://github.com/zzh010/My-wc 一.WC 项目要求 wc.exe 是一个常见的工具,它能统计文本文件的字符数.单词数和行数.这个项目要求写一个命 ...

  9. How do I create a .pyc file?

    Python automatically compiles your script to compiled code, so called byte code, before running it. ...

  10. .net 序列化 与反序列化 Serializable

    序列化:序列化指的是 将对象 通过流的方式 保存为一个文件. 反序列化则是将该文件还原成 对象的过程. 序列化的作用:序列化可以跨语言跨平台 传输数据,将某一对象序列化成通用的文件格式在进行传输. 比 ...