题目地址:HDU 2604

这题仅仅要推出公式来,构造矩阵就非常easy了。问题是推不出公式来。。TAT。。

从递推的思路考虑。用f(n)表示n个人满足条件的结果。假设最后一个是m则前n-1人能够随意排列,有f(n-1)种;假设是f,则考虑后两位mf和ff,没有一定满足或者一定不满足的状态,所以继续考虑一位,考虑后三位mmf, fmf, mff, fff,当中fmf和fff不符合条件。假设是mmf,则前n-3种能够随意排列,有f(n-3)种。假设是mff。则继续往前考虑一位。假设是fmff不符合条件,假设是mmff。前n-4能够随意排列。有f(n-4)种。

则推出递推公式:f(n)=f(n-1)+f(n-3)+f(n-4);

可是这样递推过去明显会超时,所以须要用矩阵来加速。

然后构造矩阵:

1,0,1,1

1,0,0,0

0,1,0,0

0,0,1,0

求矩阵的k-4次幂。

代码例如以下:

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm> using namespace std;
int mod, a[6]={0,2,4,6,9};
struct matrix
{
int ma[5][5];
}init, res;
matrix Mult(matrix x, matrix y)
{
matrix tmp;
int i, j, k;
for(i=0;i<4;i++)
{
for(j=0;j<4;j++)
{
tmp.ma[i][j]=0;
for(k=0;k<4;k++)
{
tmp.ma[i][j]=(tmp.ma[i][j]+x.ma[i][k]*y.ma[k][j])%mod;
}
}
}
return tmp;
}
matrix Pow(matrix x, int k)
{
matrix tmp;
int i, j;
for(i=0;i<4;i++) for(j=0;j<4;j++) tmp.ma[i][j]=(i==j);
while(k)
{
if(k&1) tmp=Mult(tmp,x);
x=Mult(x,x);
k>>=1;
}
return tmp;
}
int main()
{
int i, j, k;
while(scanf("%d%d",&k,&mod)!=EOF)
{
if(k<5)
{
printf("%d\n",a[k]%mod);
continue ;
}
init.ma[0][0]=1;
init.ma[0][1]=0;
init.ma[0][2]=1;
init.ma[0][3]=1;
for(i=1;i<4;i++)
{
for(j=0;j<4;j++)
{
init.ma[i][j]=(i==j+1);
}
}
res=Pow(init,k-4);
int ans=0;
for(i=0;i<4;i++)
{
ans=(ans+res.ma[0][i]*a[4-i])%mod;
//printf("%d %d\n",ans,a[4-i]);
}
printf("%d\n",ans);
}
return 0;
}

HDU 2604 Queuing(矩阵高速幂)的更多相关文章

  1. HDU 2604 Queuing 矩阵高速幂

    Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  2. HDU.2640 Queuing (矩阵快速幂)

    HDU.2640 Queuing (矩阵快速幂) 题意分析 不妨令f为1,m为0,那么题目的意思为,求长度为n的01序列,求其中不含111或者101这样串的个数对M取模的值. 用F(n)表示串长为n的 ...

  3. ZOJ 3690 &amp; HDU 3658 (矩阵高速幂+公式递推)

    ZOJ 3690 题意: 有n个人和m个数和一个k,如今每一个人能够选择一个数.假设相邻的两个人选择同样的数.那么这个数要大于k 求选择方案数. 思路: 打表推了非常久的公式都没推出来什么可行解,好不 ...

  4. HDU 2604 Queuing,矩阵高速幂

    题目地址:HDU 2604 Queuing 题意:  略 分析: 易推出:   f(n)=f(n-1)+f(n-3)+f(n-4) 构造一个矩阵: 然后直接上板子: /* f[i] = f[i-1] ...

  5. hdu 3221 Brute-force Algorithm(高速幂取模,矩阵高速幂求fib)

    http://acm.hdu.edu.cn/showproblem.php?pid=3221 一晚上搞出来这么一道题..Mark. 给出这么一个程序.问funny函数调用了多少次. 我们定义数组为所求 ...

  6. HDU 1575 Tr A(矩阵高速幂)

    题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如 ...

  7. HDU 2256 Problem of Precision(矩阵高速幂)

    题目地址:HDU 2256 思路: (sqrt(2)+sqrt(3))^2*n=(5+2*sqrt(6))^n; 这时要注意到(5+2*sqrt(6))^n总能够表示成an+bn*sqrt(6); a ...

  8. HDU 2254 奥运(矩阵高速幂+二分等比序列求和)

    HDU 2254 奥运(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意:  中问题不解释. 分析:  依据floyd的算法,矩阵的k次方表示这个矩阵走了k步.  所以k ...

  9. HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)

    HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意:  g(i)=k*i+b;i为变量.  给出 ...

  10. hdu 4549 M斐波那契数列(矩阵高速幂,高速幂降幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=4549 f[0] = a^1*b^0%p,f[1] = a^0*b^1%p,f[2] = a^1*b^1%p... ...

随机推荐

  1. 怎样用css来美化一个html页面

    # 转载请留言联系 我们都知道html写出来的东西是一个文本内容,很单调.和我们平时刷网页看到的内容不一样.那普通的网页是怎样对html超文本进行装饰的呢?没错,就是CSS. css的基本语法 选择器 ...

  2. Delphi字符串、PChar与字符数组之间的转换

    来自:http://my.oschina.net/kavensu/blog/193719 ------------------------------------------------------- ...

  3. docker从零开始网络(二)桥接网络

    使用桥接网络 在网络方面,桥接网络是链路层设备,它在网络段之间转发流量.桥接网络可以是硬件设备或在主机内核中运行的软件设备. 就Docker而言,桥接网络使用软件桥接器,该软件桥接器允许连接到同一桥接 ...

  4. 理解OCI(Open Container Initiative)及docker的OCI实现(转)

    OCI定义了容器运行时标准,runC是Docker按照开放容器格式标准(OCF, Open Container Format)制定的一种具体实现. runC是从Docker的libcontainer中 ...

  5. IE67下去掉input边框

    除了 border:none;之外 需要 border-color:#fff; overflow:hidden;

  6. MYSQL的内外连接

    1.内联接(典型的联接运算,使用像 =  或 <> 之类的比较运算符).包括相等联接和自然联接.     内联接使用比较运算符根据每个表共有的列的值匹配两个表中的行.例如,检索 stude ...

  7. Vue CLI3 关闭热替换后出现的warning

    用vue cli3做项目的时候如果开启了typescript的严格模式,在dev server热替换的时候往往就会打出一大堆warning,严重的影响了编译效率.官方并没有提供关闭warning的ap ...

  8. 大数据技术之_16_Scala学习_07_数据结构(上)-集合

    第十章 数据结构(上)-集合10.1 数据结构特点10.1.1 Scala 集合基本介绍10.1.2 可变集合和不可变集合举例10.2 Scala 不可变集合继承层次一览图10.2.1 图10.2.2 ...

  9. [CF678F]Lena and Queries

    题意: 初始有一个空集合$n$个操作有三种操作,如下:$1\ a\ b$表示向集合中插入二元组$(a,b)$$2\ i$表示删除第$i$次操作时所插入的二元组$3\ q$表示询问当前集合的二元组中,$ ...

  10. python中json与dict之间转换

    Python之dict(或对象)与json之间的互相转化 在Python语言中,json数据与dict字典以及对象之间的转化,是必不可少的操作. 在Python中自带json库.通过import js ...