Zap

Time Limit: 10 Sec  Memory Limit: 162 MB
[Submit][Status][Discuss]

Description

  对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。

Input

  第一行包含一个正整数n,表示一共有n组询问。接下来n行,每行表示一个询问,每行三个正整数,分别为a,b,d。

Output

  输出一个正整数,表示满足条件的整数对数。

Sample Input

  2
  4 5 2
  6 4 3

Sample Output

  3
  2

HINT

  1<=n<= 50000, 1<=d<=a,b<=50000

Solution

  我们运用莫比乌斯反演,然后推一下式子得到:

  我们依旧对于下界分块求解即可。

Code

 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int ONE = ; int T;
int n,m,k;
bool isp[ONE];
int prime[ONE],p_num;
int miu[ONE],sum_miu[ONE];
s64 Ans; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} void Getmiu(int MaxN)
{
miu[] = ;
for(int i=; i<=MaxN; i++)
{
if(!isp[i])
prime[++p_num] = i, miu[i] = -;
for(int j=; j<=p_num, i*prime[j]<=MaxN; j++)
{
isp[i * prime[j]] = ;
if(i%prime[j] == )
{
miu[i * prime[j]] = ;
break;
}
miu[i * prime[j]] = -miu[i];
}
miu[i] += miu[i-];
}
} void Solve()
{
n=get(); m=get(); k=get();
if(n > m) swap(n,m); int N = n/k, M = m/k; Ans = ;
for(int i=,j=; i<=N; i=j+)
{
j = min(N/(N/i), M/(M/i));
Ans += (s64)(N/i) * (M/i) * (miu[j] - miu[i-]);
} printf("%lld\n",Ans);
} int main()
{
Getmiu(ONE-);
T=get();
while(T--)
Solve();
}

【BZOJ1101】Zap [莫比乌斯反演]的更多相关文章

  1. 【题解】Zap(莫比乌斯反演)

    [题解]Zap(莫比乌斯反演) 裸题... 直接化吧 [P3455 POI2007]ZAP-Queries 所有除法默认向下取整 \[ \Sigma_{i=1}^x\Sigma_{j=1}^y[(i, ...

  2. BZOJ1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2951  Solved: 1293[Submit][Status ...

  3. Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...

  4. 1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定 ...

  5. bzoj 1101 Zap —— 莫比乌斯反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 直接莫比乌斯反演. 代码如下: #include<cstdio> #inc ...

  6. BZOJ 1101 Luogu P3455 POI 2007 Zap (莫比乌斯反演+数论分块)

    手动博客搬家: 本文发表于20171216 13:34:20, 原地址https://blog.csdn.net/suncongbo/article/details/78819470 URL: (Lu ...

  7. BZOJ 1101: [POI2007]Zap( 莫比乌斯反演 )

    求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得 ...

  8. BZOJ 1101 Zap(莫比乌斯反演)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1101 给定a,b,d,求有多少gcd(x,y)==d(1<=x<=a&& ...

  9. 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)

    先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...

随机推荐

  1. Mybatis快速入门指南

    简介 当下越来越多的企业项目架构中,在持久层部分,抛弃了Hibernate框架,而选用Mybatis框架取而代之,旨在更加深入细致的控制和数据库的交互. MyBatis 本是apache的一个开源项目 ...

  2. Android应用AsyncTask处理机制详解及源码分析

    1 背景 Android异步处理机制一直都是Android的一个核心,也是应用工程师面试的一个知识点.前面我们分析了Handler异步机制原理(不了解的可以阅读我的<Android异步消息处理机 ...

  3. Linux-OpenSUSE折腾-1(Qt安装,Chrome安装)

    先上图,大蜥蜴还是不错的,偶然看到了大蜥蜴这个系统,我就觉得又可以折腾几天了,先上图 OpenSUSE有一个入门介绍的网站写的相当不错,感兴趣的可以连接过去:https://lug.ustc.edu. ...

  4. 虚拟现实-VR-UE4-获取UE4

    UE4现在虽然是开源,但是并不是免费的,在你的游戏成功后,回收取5%费用和每个月19美元的费用 所以,第一步,进去UE4官网:https://www.unrealengine.com/zh-CN/wh ...

  5. 第十二篇 Python函数之全局变量&局部变量&递归函数

    全局变量:在定义的时候,顶头写的,没有任何缩进的变量就是全局变量. 全局变量的特点:在当前文件里的任何地方都可以进行调用 局部变量:在子程序里定义的变量,就是局部变量. 子程序:比如.py文件里,写的 ...

  6. 小程序js脚本模块化调用

    可以将一些公共的代码抽离成为一个单独的 js 文件,作为一个模块.模块只有通过 module.exports 或者 exports 才能对外暴露接口. 1. common.js // common.j ...

  7. HDU 3696 Farm Game(拓扑+DP)(2010 Asia Fuzhou Regional Contest)

    Description “Farm Game” is one of the most popular games in online community. In the community each ...

  8. linux学习(二)——汤哥的推荐书籍

    成为一名精通 Linux程序设计的高级程序员一直是不少朋友孜孜以求的目标. 根据中华英才网统计数据,北京地区 Linux 程序员月薪平均为 Windows程序员的 1.8 倍.Java 程序员的 2. ...

  9. u盘中毒后文件夹没显示了

    今日,我的U盘插了有毒的电脑,直接中毒了,先是显示有木马,后是自行产生一些文件,接着文件夹没了,后来自己终于解决了,分享一下,自己先用工具将有嫌疑的文件提炼出来,经自行检查后处理,接着打开文件夹选项, ...

  10. lubuntu 使用USB摄像头

    http://liangbing8612.blog.51cto.com/2633208/598762 Most of the camera driver has integrated in the k ...