Zap

Time Limit: 10 Sec  Memory Limit: 162 MB
[Submit][Status][Discuss]

Description

  对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。

Input

  第一行包含一个正整数n,表示一共有n组询问。接下来n行,每行表示一个询问,每行三个正整数,分别为a,b,d。

Output

  输出一个正整数,表示满足条件的整数对数。

Sample Input

  2
  4 5 2
  6 4 3

Sample Output

  3
  2

HINT

  1<=n<= 50000, 1<=d<=a,b<=50000

Solution

  我们运用莫比乌斯反演,然后推一下式子得到:

  我们依旧对于下界分块求解即可。

Code

 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int ONE = ; int T;
int n,m,k;
bool isp[ONE];
int prime[ONE],p_num;
int miu[ONE],sum_miu[ONE];
s64 Ans; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} void Getmiu(int MaxN)
{
miu[] = ;
for(int i=; i<=MaxN; i++)
{
if(!isp[i])
prime[++p_num] = i, miu[i] = -;
for(int j=; j<=p_num, i*prime[j]<=MaxN; j++)
{
isp[i * prime[j]] = ;
if(i%prime[j] == )
{
miu[i * prime[j]] = ;
break;
}
miu[i * prime[j]] = -miu[i];
}
miu[i] += miu[i-];
}
} void Solve()
{
n=get(); m=get(); k=get();
if(n > m) swap(n,m); int N = n/k, M = m/k; Ans = ;
for(int i=,j=; i<=N; i=j+)
{
j = min(N/(N/i), M/(M/i));
Ans += (s64)(N/i) * (M/i) * (miu[j] - miu[i-]);
} printf("%lld\n",Ans);
} int main()
{
Getmiu(ONE-);
T=get();
while(T--)
Solve();
}

【BZOJ1101】Zap [莫比乌斯反演]的更多相关文章

  1. 【题解】Zap(莫比乌斯反演)

    [题解]Zap(莫比乌斯反演) 裸题... 直接化吧 [P3455 POI2007]ZAP-Queries 所有除法默认向下取整 \[ \Sigma_{i=1}^x\Sigma_{j=1}^y[(i, ...

  2. BZOJ1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2951  Solved: 1293[Submit][Status ...

  3. Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...

  4. 1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定 ...

  5. bzoj 1101 Zap —— 莫比乌斯反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 直接莫比乌斯反演. 代码如下: #include<cstdio> #inc ...

  6. BZOJ 1101 Luogu P3455 POI 2007 Zap (莫比乌斯反演+数论分块)

    手动博客搬家: 本文发表于20171216 13:34:20, 原地址https://blog.csdn.net/suncongbo/article/details/78819470 URL: (Lu ...

  7. BZOJ 1101: [POI2007]Zap( 莫比乌斯反演 )

    求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得 ...

  8. BZOJ 1101 Zap(莫比乌斯反演)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1101 给定a,b,d,求有多少gcd(x,y)==d(1<=x<=a&& ...

  9. 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)

    先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...

随机推荐

  1. 2、Java并发编程:如何创建线程

    Java并发编程:如何创建线程? 在前面一篇文章中已经讲述了在进程和线程的由来,今天就来讲一下在Java中如何创建线程,让线程去执行一个子任务.下面先讲述一下Java中的应用程序和进程相关的概念知识, ...

  2. IOException: win32 io returned 267. Path:

    unity3d在导出android项目时出现了这个错误,找了一圈也没找到原因,最后把项目名中空格去掉后OK了,坑啊!!!!

  3. 每天一个Linux命令(14):dpkg命令

    dpkg命令是Debian Linux系统用来安装.创建和管理软件包的实用工具. 语法: dpkg (选项) (参数) 选项: -i:安装软件包: -r:删除软件包: -P:删除软件包的同时删除其配置 ...

  4. (原创)最小生成树之Prim(普里姆)算法+代码详解,最懂你的讲解

    Prim算法 (哈欠)在创建最小生成树之前,让我们回忆一下什么是最小生成树.最小生成树即在一个待权值的图(即网结构)中用一个七拐八绕的折线串连起所有的点,最小嘛,顾名思义,要权值相加起来最小,你当然可 ...

  5. Linux---CentOS 定时执行脚本配置

    非常多时候我们有希望server定时去运行一个脚本来触发一个操作.比方使用七牛的工具上传,假设同步文件中面有新添加一个文件,这个时候我们能够提供定时脚本去完毕我们须要的同步命令(七牛的qrsbox工具 ...

  6. Week2 Teamework from Z.XML 软件分析与用户需求调查(四)Bing桌面及助手的现状与发展

    一.Bing搜索的相关背景 第一,必应搜索前几年的发展重点在于欧美市场,并且取得了一定的成效:根据 Hitwise 的统计数据,Bing 在 2011年3 月份市场占有率突破了 30% 大关,达到 3 ...

  7. Z.XML-Cocos2d-x开发笔记

    大家都在热火朝天的使用Cocos2d-x引擎做游戏开发,那么大家不妨把过程中解决的关键问题记录在这里,做一个分享! 1.在Android平台下打开网页 1.1修改项目工程源文件 在你的项目工程源文件中 ...

  8. windows下eclipse连接ubuntu伪分布式hadoop2.6.0

    环境: win10 jdk1.7 hadoop2.6.0 linux虚拟机 Ubuntu14.04 首先把安装在Ubuntu上的hadoop2.6.0.tar.gz复制到windows系统上,解压到任 ...

  9. C语言循环结构作业总结

    循环作业总结 1.1 基本要求 按时交 - 有分 未交 - 0分 迟交一周以上 - 倒扣本次作业分数 抄袭 - 0分 博客作业不规范,没有Markdown语法 - 扣分 泛泛而谈(最多七分) 1.2 ...

  10. lintcode-111-爬楼梯

    111-爬楼梯 假设你正在爬楼梯,需要n步你才能到达顶部.但每次你只能爬一步或者两步,你能有多少种不同的方法爬到楼顶部? 样例 比如n=3,1+1+1=1+2=2+1=3,共有3中不同的方法 返回 3 ...