The Circumference of the Circle
Time Limit: 1000MS |
|
Memory Limit: 65536K |
Total Submissions: 8310 |
|
Accepted: 4960 |
Description
To calculate the circumference of a circle seems to be an easy task - provided you know its diameter. But what if you don't?
You are given the cartesian coordinates of three non-collinear points in the plane.
Your job is to calculate the circumference of the unique circle that intersects all three points.
Input
The
input will contain one or more test cases. Each test case consists of
one line containing six real numbers x1,y1, x2,y2,x3,y3, representing
the coordinates of the three points. The diameter of the circle
determined by the three points will never exceed a million. Input is
terminated by end of file.
Output
For
each test case, print one line containing one real number telling the
circumference of the circle determined by the three points. The
circumference is to be printed accurately rounded to two decimals. The
value of pi is approximately 3.141592653589793.
Sample Input
0.0 -0.5 0.5 0.0 0.0 0.5
0.0 0.0 0.0 1.0 1.0 1.0
5.0 5.0 5.0 7.0 4.0 6.0
0.0 0.0 -1.0 7.0 7.0 7.0
50.0 50.0 50.0 70.0 40.0 60.0
0.0 0.0 10.0 0.0 20.0 1.0
0.0 -500000.0 500000.0 0.0 0.0 500000.0
Sample Output
3.14
4.44
6.28
31.42
62.83
632.24
3141592.65
开始准备用二分去找的...然后忘了外接圆的定义,然后百度,,发现直接有公式
这里是外接圆半径公式
外接圆:
下面是公式推导:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAyYAAAF9CAIAAAB+g+t4AAAgAElEQVR4nO3dvbGjvB7HcQKHZHdGBVABM6cBlUCwFVDAjaiCdHP3sAkF3Jhkm6ANbqBdliOJvwRG5sXfzzzzjI/NiwTC/FbIkI0AAABILDu6AAAAAPdH5AIAAEiOyAUAAJAckQsAACA5IhcAAEByRC4AAIDkiFwAAADJEbkAAACSI3IBAAAkR+QCAABIjsgFAACQHJELAAAgOSIXAABAckQuAACA5IhcAAAAyRG5AAAAkiNyAQAAJEfkAgAASI7IBQAAkFyKyPWr+fr68fN31Lv/Pmt+xS5pZ/Er+f3zR/LSAACAO0oQuX7//OGLMFsi1+Jcv3/++Frh3xJ+Nc7iPKvwZqtfzZ8l/Wpi1gQAADDZP3ItJK7YyBUKU2YRSysJlef375/N19f3fGcXzCSqH82v39ZSxDX+cpYLAADw1+6RyxOZTFLxRi5n6j+Z5Vfj6YuavTXPUUudTn8+d9OZlY7mBftTHis5mXeFOGUmoIcLAAAs2Dty2ZcI/+WZNRcWTWfU7J1fzfd+Jzty2XFo9rm3Q2w+z6xgv3/+cBb1p9Prb+eaW4VgIAMAAB9v58hlD5X6/fPH3zRiUlPzY2mYvCfqzK81fv/4pV4uz8qFCX7//OEJZ/P6fXk6xgAAAGZ2jVxuJ9EspMyS0XKnkzQyfX7tcdtYrpWD7pfrMv39Z5o/C+bKIgAA8Nszcrm/BrQ7o378/O0d9+T/xaKQq/59JMWoKQ690svlmUoa8UV3FwAAcO0XueY9VfNeJd9Vuel+C/N5f1oDpaQo9D1y+UZ1Ta93iVxTgUMDtzwXQQEAAHaLXNPQq9+/f/2JJd/DjpVs/n3492KiFXvEJPTWyPW3I43rhgAAYKNED/zxpBRvsvkTjP7mo5jBVj9+/l6IXH+y27/R+rtELvPxr+gRYQQzAADgSPaMRSfprLlJhDOtvTRPjvr7ln3Rcpo0Zmi+Oxrszx3CFoPb8o3zAQAA/krYy7XiQuG33OIOl3IHSH1fvjMif76IfYbPE7kAAMALkkSuxWuI8c9Y/Hf17scPz6N2/iSgPx1X/sX+WSiRCwAAHC7NA39eeMaisyzvCKmtz1hcWjmRCwAApLRv5LLHUdmfRT/w52/Wsp51/e/x1Otuarpf5IpaMREMAAB8t2Pkivrln/Xx9wfmTH8JqS3yZ4jfV5GwlwsAACAs2S8WAQAA8BeRCwAAIDkiFwAAQHJELgAAgOSIXAAAAMkRuQAAAJIjcgEAACRH5AIAAEiOyAUAAJAckQsAACA5IhcAAEByRC4AAIDkiFwAAADJEbkAAACSI3IBAAAkR+QCAABIjsgFAACQ3AUi13/++7/gO973hcmC/00Tfy2bL9P6M15wRncC7yzTmzEF26vwXquW5t2kwjb3bv/INW6r5r4bZ9Uyg3XctpU27/2Ypri0tMiVrqpRzALjJ1hV1Pg3ve+/WNrNW2la8outem2Ngi1589JSCG696XX8Zl+70tfb0oWOuM1z7dKY3+zOkWtpyqXZvRPs+DUauRzrfeFF/CzySvdtsvIX1tpvqJgv6/jyz7fMXt8sG0QuM1j3td968S0kZmmR76yaMr5GchsWVhfc75FHR3yN3NUFG568HV45223b9cFVTPUKTrz2qA8ubcO3yl5rH8Xt6S3bUjn3bXXxU57hiBPWsq1sZ3bPyCV3XAmTucuPPGAswvTxx+HX7FvMfT9o1aEYWa/Ilb5YwqVpXq+RcIgKC1+16+MXIrQQt0jym8J6134q1DRmowX3kbw9hcnc5QubIljyVTWSixr5TnD/bmghcn3deZe2Q7ylUgllc2saXIUwmbwZY5b/ytq9H1kNY2lK4c99W531vtCQ5MnkcsbXbu378Xvw9fb8fteIXEIkcqcxn3ozlvVnzPuRTSR4eER+QcQcJ9Y73ilj5p1mF8qzinzYvFLOpcm8NQqWZKl4wUrtIrhAdyNMb3p3lrCJ5AmWNmlw+fMJhC3vTuPWwlujyPdjXnuLtK2owqKCK4rf5sG1LJU8ZoL4MqwltJ9xYe/Is8Qvc9U+kgXXbk0sb8zIP1e1Ondda5uxUIzg+zGvvUVa9X6wRku8Cz+bs0cuoXdKnnj6U+gk272XSz5UgtN4/7TW5S4npqktHT/exh1cmryK+EUJE8gHvPtmzJbfVtp9j+SYtrTjzvJuHGFK+c3I5h2/KKFGS5to7W6Sjzu5Rms3+OayWW9GthBhSm/JYzZjDO/q5J211FTcJcvveDeIsBPX1iv4jvdTuY0F/4xvdUubcakhuX/KC5d3orx8ubRCAeRSyV5pxke5auQal7NUcFD8qrFc8eR2s+GwnLdR4fCOaXbyQSvXIsbSYoWv/qUjPKbAq77spg0of48IX+5COVdZ9eXorYUwwdIaYybzLjNmEy3NvjRvcKtG1khelHc7Bzem8HqpFjE1ipxmPqVQ66WyeSdwt2r8dhZ4t9KXb7+7O2tpSqFI8gaJX44ssknMd1Bwqwr73bucpcLLU8rbc9XavdydKC/QWxehjqv2+4ZpzubUkcuKVsKLmD/dxS7FMvP/YAuz2pnb9IUjxDuNdzKrxXtXJJTWqnuwSF+hA9VauLsWb8HkAsRXJ6ZeMWtZtYSY94O8e01etbWdvRNYU1rbx5orZku6RV1amjxNsFW4650vdqmo2/bLUnsQyiy/KS9n2/sbWsj0p7UrrcIH28kqMSvyfjovg1t+d/b5YoO7xppsqQl5W1TM5vWuXd6ekX8GqzbfOO4EwtYQ/nQXLmwfYcYl3kq570RO5pYwpgzndOrINVka/+6+FoZwWe8LlyaXZhR2cPCQ23ZgeNcoHwnBeb1fEDs24uChKBzeaxcY8zWxVE25ANu+aIJVCNZd2CDuR0t7LXJvxm9zd6tapfLO6NYruGp5RcEZlz6K3yBLO8Wd3buDYhYbXIU8pbcY1sYJ7hF5O8i8BfPuncjtJnwUv5F3FHnUxB+G8p+rWt00vXex1uuYze7dccGPhPetVcfvbqEMq2Y5uWtErlGMWeOsy2qMvrAYeclybauN+bKTLU3mXd1SeWKOk5jDe4PILyz5dQxhpTFr2VaLF7dPzNfKhqUtVV+oRXA3xTc5eWvP91dMs19aYHwZ3Pfl1hVZEWGCmDJEvh/zplseeQMK07srimyN3iLFtENh+cFN6u44oS1tJi8huPGXSiu3eeG1vFnc18Ht465dWK/QVIT3rQUGd1DkXnO3sDDl6y0hhWtErlVXDOXX42uRS2g3VlNbahxyo4mZy11RjKXleGvxCnkJwRLKS9swWbDKr5cz/vDed5tHNrZVLWR0GtiqwsfsIGGPuKt267K5RsHqrJolcvvIpY0plftm5Fby/ikUwJpryXwXCEVaWqCw8PhN+sosQTHVHyPSXuSfaxuq/Kf3fWEVkW1JaMPe6se3be9Kg5NFruj1xrC7e0au4B0l3D+XIlrkl4X76YYDw/1oqemsbZfej9YeFZHilxDzfRqz/YVvDe9refoN3G9beUr5m1qYbKkZLE22odVZiw3Otbady8XzLi2+DSyJbOqrjo61rShyylX7fekddwtbpZVrF1MR7wKDxZAXHqzXLrMErT06Io+XzRtn1WK9yz/tESeUIXKx8mZ8vTHs7gKRK5iZlt6PuZeE0Ndl7PWVuq3hjgun8w3NPaaQMeUJ2nA68Z5X3LmCa7S+ZdwZhW8f+Yjda7vtu803nJCCMwo1jWmH8d+qwU2x6jt0lxPAqr3sVsG7wBhrixrc7F8LJ86YzRi5Jb0LXFrLvKYvNjCrnPGzxFu1BcZZreX2s1TZta0usrSXOOJWvTl+P6CsiSPre7izR66Y+2953xdu4jUf8uVdwvR+5PeU9enaNiQvM/jtuWqZwnd9THlixC8hOKV7aMmnqOC3WOQ+WrXMmIrIU27e5jEbcJf3vZ9ubufWmdidzNs45Wa/ywlg1dERf/JzP1p78HpPJ7KlhUdOGSQcI/OdGHnAunX0vukucMcaySWZfxSzimDzmG+0yFYXs4m871vrcifzrlqurLwRIosqNmH/Xl5a3ev7/T1OHbkie7NG3/B5YRZhfP18OcED220W43KrWqpjfBtyly+04JjVucvfpdXKNQpaVYttBRZK6H7qXZe8F+JX7W1FkVtJXvXSNgxu28ilydtwad6lIrkTB+seXK/30/jt+bX+6Fi1TSIX4q31jiXZQG6EkRtKXsh8yuCi1s4SFFMYuX0GW+OGVreqdc1LIm8ioSLeties1/vpqmXGL//16Y9y6sgFAABwD0QuAACA5IhcAAAAyRG5AAAAkiNyAQAAJEfkAgAASI7IBQAAkByRCwAAIDkiFwAAQHJELgAAgOSIXAAAAMkRuQAAAJIjcgEAACRH5AIAAEiOyAUAAJAckQsAACA5IhcAAEByRC4AAIDkiFwAAADJEbkAAACSI3IBAAAkR+QCAABIjsgFAACQHJELAAAgOSIXAABAcjeJXF9xYqYPrmhVqbyzWO8Ik20uJwAAOJVTR661QcqaV17ytvc3RC53rqU/5ckiPwIAACd06shlic8ZMZ1VmwPc68WIXBqRCwCA27hP5FrVGbaqlys4b3xvXPCdeVHjqwMAAE7uVpHLncz75riyl8ubsV4psBWqNq+F4AUAwFVcMnLJwSgmcm1YaeT78fPO/++dmMgFAMBtXDJyjWJAWbpI5/1U7uuKXGNwpfEzWrNElnM+sXeNAADgWFeNXMKf3pwkZJGYYLQ0WWSR3Lm8WXCphPJKvYsFAACn8qGRS+6+Cq56WwnHWa9VsISvFwYAAJzHhSPX0qcx1/iC1wSFha8qYbBvbOlaYeCColhaAABwNveMXPKbS9NErleYXohcS2sMhrnIGDdyYREAgBMjcq3uuBJm8fY/fX3/ZWJkCYXVEbkAALicW0WuyGtwVgaSs07kAuUrfd4CCKuQK06uAgDgcm4VuWI+DcadyL6itblnynlC/IpZSGTxAADAqVwpcgEAAFwUkQsAACA5IhcAAEByRC4AAIDkiFwAAADJEbkAAACSI3IBAAAkR+QCAABIjsgFAACQHJELAAAgOSIXAABAckQuAACA5IhcAAAAyRG5AAAAkiNyAQAAJEfkAgAASI7IBQAAkByRCwAAIDkiFwAAQHJELgAAgOSIXMBHG4ahbdu+748uCADcHJFrZ13XlWV5dCnCrlLORD68+pO+77XWWZZ1XXd0WQDg5ohcu+n7vqqqoiiy7NRb9SrlTOTDq+/quo5NAQBvwFftzp7P5yVOYFcpZyIfXv25pmnyPD+6FABwf5x1dnaVc/lVypnIh1d/TmuttT66FABwf5x1dnaVc/lVypnIeapfVZVS6vF4NE2Tel11XWutlVJ5nk+Dt5RSZtVa68fj0bbtUcUDgHs7xVnnTs5zLpddpZyJnKT6SikTcdq2TZ1ptNZmXX3fz+ueZdnz+WyaZhgGpVRVVYcUDwBu7/izzs2c5FwedJVyJnKG6td1XRTFe9bVdd20rrZtp9cmftV1bf4sy3J6/c7iAcAn+NyTbiJnOJfHuEo5EzlD9fM8t67ipVOW5bSuoiimrqy2bbMsG4bBLdI7iwcAn+BzT7qJnOFcHuMq5UzkDNV/592wplzVNI25kmjer6pquj/ZMAzWBUdu1gUAO/rck24iZziXx7hKORM5vPrmit577vk+DMPj8RjHses6E7mmbq2iKKYrifOfLr6zeADwIT73pJuIdaUm0vsfunKVciZyePVNl5KJO8/nc8o9KZibnZoh8CZrtm1rerDyPDcXGbuuU0pNG+SdxQOAD/GhkWsYBq11WZZKKaXUXhdQ6rpWSmVZVpZl/C+8poeuTJd7UnuxnPGbq23bx+OxNtnMy1mWZVEUeZ4rpbTWmxdlLfY91ZdVVZVl2XSPhqTyPJ/y07zBN03zeDyKonC37TuLBwCf4BMjl/kx/NRXMR9ZfBRzHWeXPJHU2ofDmBP8hnqZTpf5fun7Ps/zYzvYeDYOAGCzTzx/VFU1v/nQdJHlQKY36NgyxHjPw2G6rns8Hm66mu+1Q/BsHADAZp8YueY/kj+J+Q/Hzuw9D4fJ8/ycj6Dh2TgAgM0+MXKVZfl4PI7q2Vp66IoZamNuWXmG8/rah8M8n0+TSKahQl3XmcnMhcXn81mWpbk4WBSFGSfkdmWZ8d2HX2Pd8GwcAAAEnxi5zKigLMuKohCCl3m0nOuVW3LLD11p29bcGTy+xytFIYPl9D4cZrowaiYYx3EYBjME2+SnYRjKssyyTGvd9725euiW06SZ+KK+fzd5q/9mifY7ACCdT4xchhmXM3/aSWrBh66Y/FcUxbG/EdvwcBjz0fSLy6mPyuqyMjeFmlZU17WbroqiUErtX6toG6oPAEDQ50YuoyiKt41blx+6Mn10+F2/NzwcxkyZZVme5/O8KEcu689p7ccOUd9WfeMqY/IAAO/3cZHLGiRk7kv0+mIz0TTN0kNXpn4d60rW7l4s59LDYYyu68ylw2myDZHLXIvcs84zSas/jqMZ/rV2vUFJa/22YgDAh/u4r1FrsIu52aZ3yn2Hy8gPXZnGyzdNs+qy2u5jejY8HGYcx77vp4Hw88uFGyKXufeVe2m16zrvrWLfuZuWqv9+jOUCgMv5uMg1v/V23/fbbtS5gfDQlWx2VdHcbH0+SKhpmrqu3zbAa8PDYcZxbNt2ugDXNM0UR6yLcXVdZ9/Hcnn7TkxH1/yy3Yt3sY+3rfoAAAR9XOTqui7Pc9OxVFXVO0+c3oeuWLGvLMv5o1fMiX8cR/nHlW8o5yg+HMaU3BR+yl5m9izLyrLs+75tW/N7hWl286m3u+j5fJrn/BRFYdb4tvvOb6s+AACyj4tcSZn+jyzLvGOrN5iuE+07xn/3cl7LUdUX1msuKJsAWlXVqhuFbOM+rPr9ZQCAj0Lk2s0wDOZUOvXuvNgv1XWd6TGaj69/3e7lvJajqh9cr3XLjKS34De/0nAHfr2zDADwaYhcu2maZjqJml+0vXirTDOKy4wr0lrvlQx2L+e1HFX94Hq11vMMVJZluvuTmXV570P7tjIAwKchcu3GGt/zeg+BGc/U933TNGVZ7jV+aPdyXstR1Q+u13r0p1Iq0XU9cwN9b+R6WxkA4AMRuVJ5PB7H3kQ+0lXKmchR1XfXO3/H3J8i0RVPE/W8kettZQCAD0TkSsI8QPDoUoRdpZyJHFV9d73mUqO5iGwu5yXKOtP1TTdyva0MAPCZiFxJFEXhvW/n2VylnIkcVX13veZ+YOaB6+medzQMw3Q1041c7ykDAHwsItf+6rq+xID0q5QzkaOq713v9OApc/v7RNc65zeicyPXe8oAAB+LyLWzrusu8dCVq5QzkaOqv7Te+U8FzU35d7/bqrkxhGv+FKPUZQCAT0bk2tMwDJd4FMxVypnIUdUX1quUmnd9JfodZT9TFIVSqu/7qTzvKQMAfCwi157MY/jatjVjkM0tHo4ulMdVypnIUdUX1ms9yds8mzLp6HX3wuL7ywAAH4XItZuyLKeLNY/HY8ebl+7rKuVM5KjqL623bdvpKUDzxGMeOZBidL+5s64pidb6+Xy+vwwA8IGIXAAAAMkRuQAAAJIjcgEAACRH5AIAAEiOyAUAAJAckQsAACA5IhcAAEByRC4AAIDkiFwAAADJEbkAAACSI3IBAAAkR+QCAABIjsgFAACQHJELAAAgOSIXAABAckSusxuGoW3bvu+PLggAANiOyHVqfd9rrbMs67ru6LIAAIDtiFxn13VdlrGbAAC4Ns7lZ9c0TZ7nR5cCAAC8hMh1dlprrfXRpQAAAC8hcp1IXddaa6VUnufT4C2lVNM04zhqrR+PR9u281mqqlJKPR4PMw0AADgnItdZaK1NnOr7fj54K8uy5/PZNM0wDEqpqqqmj5RSZpa2bYlcAACcGZHrFLquK4rCvG7bdnpt4ldd1+bPsiyn13VdT5MBAICTI3KdQlmW0xXDoiimrqy2bbMsG4bB/Jnn+TTZ/DUAADg5ItcpTLmqaRpzJdG8X1VVWZbm9TAM1gVHbtYFAMBVELmONwzD4/EYx7HrOhO5pm6toiimK4nzny6aC47ckh4AgKsgch3P3OzUDIF/Pp/mtenByvPcXGTsuk4pNUUx0+Nl0tjz+ZxiGQAAOKeLRa6vr6+vr6+j1t40jVIqyzKtdVVVRVFMV/1elOf5lJ+UUtMVw6ZpHo9HURRa6ylvGVVVZVk23UICAACcGZFrnbquzUVAI89z7lMKAACCLha5Dqe1nt+aoSxLpdSB5QEAAJdA5FpnfgeHcRyVUntdWwQAADdG5Fpn/mgd8+tC7tQAAACCiFwrmN8Jmp8WmkuKS3nLPPfQxf3iAQD4TESuFczdHPq+z/M8z/OjiwMAAC6DyLWCuWXD+PfmpdydAQAARLpA5Fq6McT7bxgx/7liXdfz28S/ItvJ6yUBAACJXOA8fZ7IpZSa/1xRuCkXY7kAAMDcBSLXeWRZNr+Y2LYtv1gEAAAxiFxR2rY1j/rJ83yeuqqqUko9n88DywYAAM6PyHVS3odVD8OgtTb3pxBuUQEAAM6GyHVGfd9nWWYN/BqGQSnV9735syzLtm2PKB0AAFiNyHVG5qeRVuSqqmo+eL9tW3q5AAC4CiLX6Tyfz6Zp3MhlPd4RAABcCJHrdMyNJ9zIVZbl4/GgZwsAgCsicp1L0zQmVLmRyzxoyIzxIngBAHAtRK4TMT9INK/dyGU0TWOCl/t7RgAAcFpErhOpqmp6gtBS5Jo+NU97BAAAl0DkOgtzYwiX6c2yHuY4PWAbAABcApHrRPqZoijMXbhM2LJ6vOq6LsvyoGICAIDViFwnZV1YnN9rvu97pZTV7wUAAM6MyHU6TdNorc1VRa21eYBj13V5nhdFobWeD/kCAACXQOQCAABIjsgFAACQHJELAAAgOSIXAABAckQuAACA5IhcAAAAyRG5AAAAkiNyAQAAJEfkAgAASI7IBQAAkByRCwAAIDkiFwAAQHJELgAAgOSIXAAAAMkRuQAAAJIjcgEAACRH5AIAAEiOyAUAAJAckQsAACA5IhcAAEByF4tcX19fkVP+57//WzVBcPpVk80n9s5iKvLlE798AABwFfeJXGsj1Krpp083RC53rqkWbnWIXAAA3NJ9Itf4Pdn857//c/8TJh7FOOVOHEPo35pe08sFAMAnOHvk8oaSYEDZ1sW1NFewP8wb77yBz+rfopcLAIAPcYHIFfOnt8tqVReX+1p48/WBX4zlAgDgo9wkco2hjiv3mqN3rqXluGJS19I05CoAAD7NfSKXxQpV3j+XricuBbWlyUanU21plvFvz9b8Nb1cAADc3q0i19IlRffa4trX7p8x07izLA3h8lYHAADcxgUiV/zw+fjA5J0y8heLgsiLksJALjq6AAC4pQtErsg/5RQlRy53fL0l8r5ckQPt6eUCAODT3DxyjbOrjfMZV91nK/6mqZHDwqxbRbjvAwCAm7lJ5HJT0baxXME/hTet9VoTeyOX8BoAANzJPSOXK76XS/gdohDg5KuT1kdcWAQA4NNcIHLFD5/38iYhuVcspmCRk3mnd4vNwHkAAO7t7JELAADgBohcAAAAyRG5AAAAkiNyAQAAJEfkAgAASI7IBQAAkByRCwAAIDkiFwAAQHJELgAAgOSIXAAAAMkRuQAAAJIjcgEAACRH5AIAAEiOyAUAAJAckQsAACA5IhcAAEByRC4AAIDkiFwAAADJEbkAAACSI3IBAAAkR+QCvum6rizLo0sBALgbIhfwR9/3VVUVRZFlHBcAgJ1xagG+eT6fRC4AwO44tQDfELkAAClwagG+IXIBAFLg1AJ8Q+QCAKTAqQX4hsgFAEiBU4vN/GANV7RLA3glctF4gH3tclADJ0GD/mYYBg7yD7c5ctF4AAACzhDftG1bFMXRpcCRNkcuGg8AQEDk+kZr3TTNqln6vk9UmLXrSlSSYRjatnUXfkhh3rCitm2zLBuGYe2MbuNJsRGWdscu3r9P01XnTnUZT3O4TQ6sLHBdF4hcwzBorcuyVEoppbquS7euPM9XHe11XW84N2/WNM1S8RKVpO97rXWWZe5mf39hvIRibFDXtVIqy7KyLNeGb6vxpNgIwu7YxZv3adLq3Kku42kON+PAygKXdvbINQyDUmo6/MqybNs23boej0f89F3XVVWVqDBLvJeukpak67qlC23vL0x8Md7MajzpNoKwO3bx5n2atDp3qst4msNtWu/7Kwtc3dkjV1VV8y+Utm3T9XK1bbvqecZFUSTtclta6fP5fGdJmqbJ8/wkhYkvxptZjSfdRhB2xy7evE+TVudOdRlPc7gZh1QWuLqzR66iKN72bzitdXwX2tousb00TaO1fmdJtNbWGg8sTGQx3m/eeF7ZCG3byg1e2B2rlrNkx30aU4bI6mzz5vZ5oV0TdMJ2CNzA2SNXWZaPx+M9/4zL83w+JKJpGnNNsyzLLMusL46madyub3mWteq61lorpfI8n7ZA13XWl2zqkiilzKgmrfXj8Zin0pjC7LtNqqpSSj0ej/lAK7cY7zdvPN49Mi7sUEvwFCXsjlXLGaM35ubqxJQhsjox3OrsWJcY59k1sou2Q+AGzh65+r7P8zzLMrn/3Byxrvjvo2EY5v3k5rssz3PzLdA0jfUrNvcfecFZVpl6Tfq+n4+ZMDd/emdJsix7Pp9N05hxdfMv0GBh9i2JUspsk7Zt59/ObjGm6V9sFZGsxuPtAFjaoZbgKUrYHauWE78xN1cn5nQbWZ0gb3V2rEuMk+wa2XXbIXADZ49chhk3kGVZXde7LLDrOuufZW3bWl9e5geS5rX5epof/94rnvIsq4o3xQL3bk/WD4WSlsTMO232siytXRAszF4lqetaiErpfjzlCjYedyPIO9RalHCKCu6OyOWs2pibqxM83cZXRyZUZ6+6BJ1k18gu3Q6BG7hG5DKKoni9q+pTWbwAAAtZSURBVLnv+6qqTG/H/H2ttTVaM8uy6czq3h5TKeV+y8iz9H2vFljfLPMfZrrfqubfl+8piXWTqjzPrbQRLIxckvjCuKsWirFBzFNHIhuPuxHkHdr3/bwTLsuy6bVVKXl3xC9n1cZcVZ34MsRUJ7KVCtV5pS6rynCGXRMs7aXbIXADp45cVndI0zS7RK5xHOu6zrJs3o9t/frG/DNuujlFVVXWv8aKorC+u4OzxJu+zsyVODcLWv/STVeSqqqmH+J5H2gjF2bfbSL8k/c9/yCObDzuHpF36JzcKxDcHZHLWbUxN1cn2MsVXx2ZUJ296hJ0kl0ju3Q7BG7g1JHLOj3Xdb10Ewe1ftROlmXTmdIMR5h/Ou+PMT8Lsr6e3FEUwVkiTb9C6rrOO/hpHmKSlmT8/p3uHTgiF2avkljRzeX9dEOriCQ3HmsjBHfonHyKCu6OmOWs3ZibqxOMXPHVEcjV2asuQWfYNbKrt0PgBk4duea996bPfMfRlFVVTde8mqaxvhfqup7OqWVZulHPHYUQnCWSucegGUxqIsv8bmTuHQjTlWQcxzzPzZbpus7d/sHC7FUS8y9p8y3/fD6tf9mnviujK9h45htB3qEW+VQn747I5azdmJurE4xc8dURCNXZsS5BZ9g1squ3Q+AGTt2mu67L87woCq11VVX7/nrFHPAmEJRlaX31aK3zv7z/hjPjFVbNEi/P8+mbyBo10jSNFVySlsRczDW7wN3+wcLsWBKTctTfn6bLxUhNbjzuHhF2qEU+1cm7I345qzbm5uoEI1d8dWRL1dmxLkEn2TWyS7dD4AZOHblSMwf88/l0b6Ps/RawWM/Ui5nldd5HHh1SkpjCHLhNXuT+s9siNJ5x/cM6zyOmgV3Fneoy3q46sqTPdgOO8tGRa+qrcDvnY0Zutm07Pyu/Z7CnNWzowJLEFObAbfIKM8pEvmQjNJ7R2SMXEtPAruJOdRlvVx3Z7gc1cAYfHbnGcdRaZ87tvuJvHzVdLHvljlPx2rZdGn7+5pLEFObwbbKZ1rooiuAoGW/jmX+6b6neIKaBXcWd6jLerjqyFAc1cAafHrm8v5oxj6aJuSI2DMN0w5vIWV4hfA29uSQxhTl8m2xeoLlpfjByyT+5mvbIhcQ0sKu4U13G21VHRt7CXX165Bp9/0bc0DFzngdTUJIXmfYQE7nGO3YwAAASIXIB/zRNYzoMIiMXAACRiFzAH8MwTL1WRC4AwL6IXMAf83u/EbkAAPsicgHj+HcsvOuWv8AHALwfkQv4o58pikIp1ff9RX8EAAA4GyIX4MGFRQDAvohcwDdN05h7nGZZprXmFkEAgF0QuQAAAJIjcgEAACRH5AIAAEiOyAUAAJAckQsAACA5IhcAAEByRC4AAIDkiFwAAADJEbkAAACSI3IBAAAkR+QCAABIjsgFAACQHJELAAAgOSIXAABAckQuAACA5IhcuL9hGNq27fv+6IIAAD4XkQs31/e91jrLsq7rji4LAOBzEblwf13XZRlNHQBwJM5DuL+mafI8P7oUAICPRuTC/WmttdZHlwIA8NGIXLiVuq611kqpPM+nwVtKqaZpxnHUWj8ej7Zt57NUVaWUejweZhoAAFIgcuE+tNYmTvV9Px+8lWXZ8/lsmmYYBqVUVVXTR0opM0vbtkQuAEA6RC7cRNd1RVGY123bTq9N/Krr2vxZluX0uq7raTIAAJIicuEmyrKcrhgWRTF1ZbVtm2XZMAzmzzzPp8nmrwEASIrIhZuYclXTNOZKonm/qqqyLM3rYRisC47crAsA8B5ELtzBMAyPx2Mcx67rTOSaurWKopiuJM5/umguOHJLegDAexC5cAfmZqdmCPzz+TSvTQ9WnufmImPXdUqpKYqZHi+Txp7P5xTLAABI4baRq2kapVSWZVrrqqqKopiuLuGW8jyf8pNSarpi2DTN4/EoikJrPeUto6qqLMumW0gAAJDObSPXOI51XZuLTUae59wPEwAAHOLOkUtrPb8FQFmWSqkDywMAAD7WnSPX/E4B4zgqpbi2CAAADnHnyDV/hIv5FRt3BAAAAIe4WOT6+vr6+vqKmdL8Hs38hM1cUlzKW+b5ei7uSw4AAPZy28hl7hrQ932e53mepy4YAACA4GKRK565NcD49yaZ3AUAAAAc6LaRa/5zxbqu57cjf0UG4O1eP3IB4HC3/S5TSs1/rijclIuxXAAAILXbRq4sy+YXE9u2zfjFIgAAOMgNI1fbtuZRP3mez1NXVVVKqefzeWDZAADAZ7ph5DpcURQHj3wB7uXoYxoAdnCB77KlG0PE3zDincz9wI4uBQAAOJcLhINrRa62ba1x933f776WYRjatk2x5DFU4GtV5051GY+ojuyoHQcAV3SByHUtWuv5ALK6rne5OcVc3/da6yzZrwGaplk64V2uOneqy/j26siO2nEAcFFErp3leT6dKrqum9+oYkfm3voplmx4b5Bx0ercqS7j26sje/+OA4DrInLtydzpfvqzKIp0vR1Jn2JUFIX7086LVudOdRnfXh3Z+3ccAFwXkWtPbduWZWleW/Fr7XLkTgut9dKdXVctZ0nTNNbyN1cnpgyR1dlmx7rEuNCuke2447ZV1q0pAFwakWtPWuu2bc3rpmm8V0bqutZaK6XyPF/qmQieopRSZsSY1vrxeEwrXbuc8e/tyqzHUHZdZ53FvdXZpS7x1YnhVieyLmNcdYJOsmtkb95x2yrr1hQALo3Itac8z6chzN4OgCmT9X0vDIIJnqKyLHs+n03TDMNgPdpo1XKUUqY8bdvOz+vmVhfz4dhudfaqS3x1grzVialLfHWCzrBrZO/fcdsq69YUAC6NyLWbYRjm41qKorBOM13XTb0R7r0k5uRTlDlT1nVt/izLcnq9ajl1XQtlsH6JZlVnr7qMa6ojE6oj12VcUx3ZGXaN7JAdt7my6X77CQDvR+TaqOs66zJK27bzzgallHUGKstymsU9TfZ9P3+odpZl02trELF5XuT0r/88z+cliV+ONaPFdGAsVWevusRURy2wTsZCdeS6xFQnsgyH75pgUd+5416vrFVTALg0Itdqfd9XVWVOHvP3tdbz00NRFNZ5fTo/NU0jn0vkXoGqquaD9DdfG5K7ENyulHl19qrLuKY6MqE6cl3GNdWRnWHXyA7ZcZsrSy8XgDshcq1mbrtV13WWZfNBNtav5a0RNtPPyrquM2c7YZCKfIqan2LlcTzCcsxVIeFuk9an8xXtWJdV1RHI1RHqMq6sjuzwXSM7asdtrqy8HQDgWohc22VZNsUsM3x4/qk1QsXcNNKMDn4+n+b1th+L5XluPu26Tim17axpuiXMKfP5fFrdJO4tLufV2bEuq6ojEKoj12VtdWSH7xrZUTtuW2VT31QWAN6Mb7TtqqoyJ61xHJum8Q6Lmb+T5/l0anGHAc3JZ7umaR6PR1EUWms5oAQvUGZZNv3O31rFdM3IW5296rKqOrKl6gTrMq6pjuwMu0Z2yI7bVlm3pgBwaUSu7cw/0E1HV1mW7tlr/vCfa5kPsp5ctDp3qst4u+oIvDUFgOsicr3E/AP9+Xx6H3vStu22+x0czrpIaly0Oneqy3i76gi8NQWA6yJyvWTq6FoaTHPFJ5a0bbv0Q7bLVedOdRlvVx2BUFMAuCgi16u01vMbQlqGYbjcr9yFU93lqnOnuoy3q46AvAXgfohcrwr+pB8AAIDItYObXdMBAAC7I3IBAAAkR+QCAABIjsgFAACQHJELAAAgOSIXAABAckQuAACA5IhcAAAAyRG5AAAAkiNyAQAAJEfkAgAASI7IBQAAkByRCwAAIDkiFwAAQHJELgAAgOSIXAAAAMkRuQAAAJIjcgEAACRH5AIAAEju/8fkkUurvEKuAAAAAElFTkSuQmCC" alt="" width="734" height="338" />
内接圆
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAy8AAAIgCAIAAAADbsEGAAAgAElEQVR4nOz9d3QU9eI//g+Q6/F4o+eqfBdIeKcscOj8AgG8KOAKIkekrIpyABtBDCDyUdgroIICSgkikIQqBJAmJZQgS5HQi2DoLSAh1IX0XrfM74+Rddmdec1rZmd3NszzcXI4yezsq+3szJOpDAsAAAAA6mHUbgAAAACApiGNAQAAAKgJaQwAAABATUhjAAAAAGpCGgMAAABQE9IYAAAAgJqQxgAAAADUhDQGAAAAoCZl0tg2U3S0aRt5nnMJ/aP7J5xTpD7ptpmiKWs/l9BfvWYCAACA5qiTxs4l9I8m+Lsokbnc/ZOhtpk8khdPGuONXdtMf5e0zURTEwAAAICX1N435pGSXIqSsDftkVnPnUswuYQ63nq4sNXftO2cWynEGrd5lAsAAADgHelpTMIeq0dii3dpTGhX1d+vexbuFpxc6/m7B26hiptKSFrcDNgvBgAAAIqSl8Y8j/nxHhrkSWMJpkejmsdshDTmnpRcXueNeq7vcUlj5xL6exT1966yhHOswBFM0awGAAAAIIs/0pjrfi2+GOQ67VxCf2X2jbkROYv/XEJ/ntzm2ibe1gMAAAB4S4k0JrpjSngu1/DlMZe888YknvvvlrD4zy8zbfunYByqBAAAACUpkMYexh/P87bo0phHYZ5pjJSwnEnJm31jPHORzi7DTjIAAABQitdp7OF1iO4nVimexvjOIHP+rkgac97dQuwkMY89egAAAAByeZnGtpncL1x8+BpdGiPO5dc0xr+HDwAAAMDH5Kcx/hs+PHL3VOE0ts0UbdomdGOKh2/jTWN/n87vdkWmt2mMe3kb9dlnyGwAAACgEG/uNyYQSbhkkyCQxtzuJcF3Fr1nGnMv5JG9cI/MSrqFvvCZZ9tM/RPOETIdzd1tAQAAAORQ5A4XfHj3jT2a4cRuU/bo6x774lzP7lLmLH6kMQAAAPA7v6Ux/ksx3Qt6ZK5H9qYJ1Pl3NUhjAAAAUEP5b9+YZylitx+Td78x4eYgjQEAAEDgUTaNPXLWlnD4eeQOEm7ny7uEHon3cVUujVFVjHQGAAAASpCexrxGdyNWNpD2jQEAAAD4igppDAAAAACckMYAAAAA1IQ0BgAAAKAmpDEAAAAANSGNAQAAAKgJaQwAAABATUhjAAAAAGpCGgMAAABQE9IYAAAAgJqQxgAAAADUhDQGAAAAoCakMQAAAAA1IY0BAAAAqAlpDAAAAEBNSGMAAAAAakIaAwAAAFAT0hgAAACAmgIxjT0/+pDsV11nE/3hfWN0dDSh2Ghh9IWQy5c6A+9bnBNpGqZU43lJKo13SAljzjv+lDXK66aygyOpTNE+yhsl2Z8+zbJEU6D3MwjNSdlCQhWKd0fSZ8RbspdLoNQe0Sx1lBMlzSCP6Og5f6cfdqmV0hQlaRsnNLOPtnE0M3j/LkUW5sdMzU5jhOVPNLTJTmOU05VdoD23nUJbU5q3kCtV9htCXj9KXSGKbhvINQrNSb929sXqg7JMedtFwgz0SwhNaUITRaeILn6Ej0lSyZIaKVSd6EIibwVCM4O8j0m0CvJ2Ud43Tup3WSmSBp8wnrwrBKHPnXKpcyV1jwPv/PTbON9941i5i6VSC/PjpGanMc8pnmmMJq7xrnGEVvc030+ad4kW6FZstMtKk7fBZEKzifaRpnBypV62UGge73tEWCMQCpf00dMXQlhCPJtEnkioV+qrhJ56/knTHdFmk/8kTOedwtsAyvd6/i407DI+TXJ/Pd8r+uGKEmoVoW2ePaWvi6Z2oVGSR3SghFolOifhT9Ge8raEchtH3t3l/TaO5k9J071ZQiAg0pikPa4y0hjvzIQllbAGpFwieb+NvL9TfjEIay63KZLWep4TKb+ZNMjfUm/aKTQbb49EWyLUPNFOKUK0QM9BcE7k/bAIQ0SeQWhIRcsnd0d0wAmfDv2nINRZ0aJEK6IfH9FahFpOMwN9G6Qif0C8n060xzLp1h55o+0N+tpZisGk/JN+qaPcxvFOcZZGsy0Tmi40PpRfE8rpvEsvDd7CtSZQ0hjhT9ZjiST8D8DLfWOi6xRJyxNhSY3mW9nR/CnUQqECefHOzNsL2d8TGUURZhBqsNBEmpGX11plVxw0y5KCHxbv4BDmJE/0ciRFZyB/R8gfsdRmSP24hfpO+WkS5uRtuWs53iyBvNXxtlZoqRNqg2c36YfOmx7JK5PcTfo/6Zc6qds4z5cIb5F6uo4i3zihoig/Te8/9MdPTUpjQmcmktMYTaVCa0MvV3yEKTLWAq7NI6xNaNpMXtWSe0FDqFjClkZoq0DTYEnrVreNEKFhMtopidDbJfVdaAahGmlm4y2TcrVLM0SEwRSaX/bvbhNdq6BpgKRGEuoltI13BsL489ZCiXeUovmWCtdXXUeMpguS5iRPp0G5SLh+QKKjSvjcecsR6oJzoow0JnqkSNJ5YzTd4e0LoY/efJrefOKPq4BLY7z/D5B9pJK8T5j1+JayFN9nysU6mpjtCGsB3j95f3GtwvONsr91vL2g7LtnLbwNIzeAvjs0/aKpRVIJNNNF8X5q5Krdxpl3Brc53cbH7V00I+nZVMKg8U4UHSLyDISlQqgx5ImSGkk5Xcan6fxT6BvhOeyin5Qomop4X3Vtg1CxNB8BGeVszpk928M7vLytIo8n5Z80XeZ+8WYbJ5S6KLdxnsgLD2/7PadQzsZ6jDZNG7QpsNKY0BLpTRoTqk7GMXU3hFdFv+FCC6WkP10nii7cQu/lXR8p+J0RHUPC2lZqgULliH6+og0QqlTe+JDrjRZYkRE661msUHU0rRJ9yXNUeVsl+lHS1EvfeKEB9Hw772DSFCtahWj3Pd/oNphC7aQcBzLehvF+mpTj5lom79t536V4v8gtJNQlVDvln/RLndRtHHmT5zqdchtH6I7bSzSfCHl8aOZR5ON+zARQGiMfFydMpExjhJdE14CUr7pO91zHSVqDe64xyd98yi8YZXcUXEVSrh/Jv9MgVEr/+UrthZfjQ7MWk1GaUPcJvRD9mCgXOfJXhtxs3unkJYG3ENElmb6RkqbTTPRsj9svnv0ldMStZMolh7dJNMuM0Ljxtlz0XUKveoNybSM6qpRrG/qljnIb57Zni+ZIpdSdEZ6ddZtO+Y0TLY08G+Fd9EvyYyZQ0hh9/HebIrRT1/s0xrtMEJZU3jkJ33bydPp3eVZEg9BxQgNkIJcg2kJyaTJmE+2y9+0ktJ/cTqmtEnojebGRtISwHguY1MZ7NkZG7ZJqEX0LZV/IraVpledEz8H0/HSE/iQ0IFrgo+dtDM3ny1sgYZQo56QvUx7KekU/UMo/6Zc6Gds48u/kN/KejUNG2RHCS/QfOk1Fyi4YNUKgpDH6Gch7cckpTeiN5GVR6FVJCx/5T5oyXb8zlKXRlEmezfuvBH0JonPSrDWc02k+Ndc5FdxCeK7cyXOSNwyE2YQWA6HZZCx1bsUKvYvQQkK/JNVOnij68Ql97lLbQJhT0mckNMVztN1aS+4dTUd4CxRtBqFw0U4RXiXPKZXUJZlm2Sb8Sb/USd3GOX8R2qJ5TiFv43hbRf8q5UdP/nYITeEdRmUXjBqhRqYxwhvpD88LpTFPQl85b9Y48rZMrMCWXsa3i6aRNO0RJWPrJbrxJrzK8n2fhYp1/ZOwWiGvu70ZN2XHnGbhkfpGQk8pGy+7VbJrEX2L5/LDWyANqU0VHZ9ogaQotKASOiVUEW+BQrW49lRokCV96DRfNNkkjQDr0mtJ3ZGxHpC9jWOF96tJ2sbxtor+VS8nso9+odxm9hxe75eEmqjmpTHKia6H3nnnkZHGKFeLvO8SepVyuvNV0ZW1pDIJmxaa9tCgL0F0Ts9vMnmLKLrSpPyMJJVJ0xHynLLHnGYAFZku9KpS5Yi+yls1/ZKsVHqQ0dRoCkKFU84pirA8O/+l/3J59pF3Cs2csntEU4JrB6UWIjQO9Eud93scPLdlkrZxhO7QvCr6jRMaCsoFm9Ae7Qj0NOZ23iLhLZ5HMEV/XN8uumwJLWGEpZAVXoiF+ku/yPK2ivddlNV5lq/Il4TcI1GSeiGvwYQWer7KWxf5U6CvmncpohwlctVCYyg6tvSlkQuh+fjIr9L3nXdUCVUQ2sA7YpSFyBglSS2RgbzAUA4U71Iq2lpC4bxlykMzekILUjRFXJO91FFu4zx/95zZ842U2zihpgq9Sv7G0ZRASZFl+zEQEGkMAAAAQLOQxgAAAADUhDQGAAAAoCakMQAAAAA1IY0BAAAAqAlpDAAAHh83AQISeblFGgMAgMeH6GYPwP+QxgAAQEOQxiAAIY0BAICGII1BAEIaAwAADUEagwCENAYAABqCNAYBCGkMAAA0BGkMAhDSGAAAaAjSGAQgpDEAANAQpDEIQEhjAACgIUhjEICQxgAAQEOQxiAAIY0BAICGII1BAEIaAwAADUEagwCENAYAABqCNAYBCGkMAAA0BGkMAhDSGAAAaAjSGAQgpDEAANAQpDEIQEhjAACgIUhjEICQxgAAQEOQxiAAIY0BAICGII1BAKpJaSw6OppmHlG+bgPlzJRF+bRHvhsNL0sWKspHxfrn7Qo2nr5AGZU+P/qQgrPRtMTtJUUGSqgQ3unOibKr9v/i5P3bJa2g6Kt4fvQh7sdzOu8UwoIkdRmjhDQGAegxTGPeF6LU2+lXdoSMRd8jqaFN3jyUHfRdGuNtTED1naYj5NlomkdZoIx20m8CCXPyjqciM9OjLzZa7Osm+okE/tIodZApq3BmL6EQ5jqn0BTXlzyLoilcEqQxCEA1NY0JrZvc5iEXQlkpDdEG07zK23jXX0S7LKlflK0VqsjzTxlDRNNC+g9XasmipVH2nWUzVwx62M9JBwlFCS2TvAMl2keacZbxoUja5okGMpqqo4UXcm8+aJZ6maFvgFAhstvJ+5GJNpI4v+DSSNkXoVZ5s+QIBS+aQnjf6w2kMQhANSCN8a4cCWtzoTd6ziCjJVKbSlizk9fCng2m6bLsjlBuqOhLoF/vi7ZT6F95fNH3g5Ocm73MFYOiB63IJFRBuTmn6aNS83ju3vBmhwdv1YReE77asj9o+q8h6/EpS1oevFyx+HlpdHZQdNVE+FAIjZSRxjwXMKQx0KYakMY45DWm6MrRy5UmoUBJ8wit8nhf9fyFd+0ptUfkNbLotor3F9G+e7OtUqQotwKV7PujmzzPOEZeDHjrIreKXI6Medw2cvRn/FASXVZ5h92bD1qoOtGRl91IGa1VZWkU6hHhd8IwUoZ4whTPVvHO7PaLlwItjRUVFe3evdtqtardEFDT45nGCCtK2at4mkwgOo/b+pfwdvq1vLweEcZEdBvgTSFKNVXxAsl/Um7XhfZGiNYrqS7KjbdwI90FSBqj75fUeslTCKsLt9k8W+X9AunPpZGyavKC6jmRPjaJLmmi8yhy9ligpbHdu3d37Njx1q1bajcE1PR4pjHX6YrEAspyPNdihHeRV6me/RXdHkjtkVBLXKsmbBoptxy8f8prquhGQmqBnuXI6zvLsv+crPNw6ye6zLjN4Fk45VATpgv1wq07nseJhLaIhM2t6xS35ZNQtaQOSsU7IJ5/8n4uvO1kPT4U4iIhuZG+XhoJ4yz6O6GdlGmMcE0l754w3wmoNFZVVfXhhx8yDLN6zWq12wJqqhlpzHNFQFhtOX8R+l1e7YRNC6EZlL8TXuXtr9BLQmtt3rooZ6ZZHXtOIf9Jz9ke0aaq2PdHuJy241kvuaeiv5DLkTrIzvlFz7CWt7kVXUhcp0sYYWqUDZC0rNIsIWygLo2EnkYLf5WEGkBzuqHQAkM4JdHtJfpTGOkFVBo7f/58t27dGIZ5++23Kyoq1G4OqKaGpTHR7ZPbGsTzd9lbLJpVdrRAciKvRmlepXyJHmGFLroNEGoM/XZFUiMJQy2P4n1/VOaKQfxxjNxmQl00y55o+YT5efeHscQQplQac108lFp4RBdFtzJphleoBKHPSFJrKVvi/dJIWZfo727vFV08hOKU6H8DaF6VIXDSmN1unz9//tatW1q2bPn000+fPXtW7RaBampGGmM9Nsyi6yneV3nfSLkapV9lE97u2RLKHhHWifI2A95sA2heFR0u0ZGXte2honDf3XeGCe4ck9Rf0YVWNGGQuRZL2OXgFtQknRjkrIWmtaK/u3WNt3bPOUWneE6k/Jjc/pS9QPpzaaSsi+YjcP1T9un25MPivFMeszSWmZk5derUkpKScePGMQwzc+ZMtVsEqqkxaYylW5W4/kK55pW3ZqcpnDwDYYPECq953bajNJUKtYRmM0loCblqmqGQMfLeb/xY5fv+6M6wg5OETpyWsZn3ppuinIWLbuE8t5r0aYy3RqHprh8BYWaaYaH/hvKuE0QXCZqSafhzaaT8Lgv97jmR8jAlgVCS4z3Q+fhdU7lixYrkzcksy+7bt+9f//pXp06dCgoK1G4UqKPGpDG3jZPQaot3xepZDnkKoQHkd4kWRb/K4+0R7+8yNgPkvlBuAyRlC9nzCM3mzcZPxp9ifXe53ybdDQXIrxKWDc8miW47RWukTGOEKbwl0H/XRL+2lOWIzkMzUbRqSSlNUiN9vTS6rUWdEwkFSvr20SxIQpeM8IYwSYXTC5A0lp+f/9VXX2VlZbEsW1RU9OJLL9auXXv37t1qtwvUUTPSmOfagf5/jbxvF/qT3AYCytJkbCGc/RXatvk0jVFGBNEqZMxAntMPaUx23ymrdp1OXopEWyKveT5NY+TvqVBL2Ec7Jfujp6lIaKLQPLwhTFKrpFat7NJIv7rgXbkR2ulE2GPqmcOE/iREscds31hKyrbx48dfuXIlPT09PT39448/Zhhm1KhRNptN7aaBCmpAGpO0miNnJreVi9SSvZlHaNXGO8WtkTQ9opktWmx17NbIaIFtg5dDQVmC0My8n2NA9Z2yI/TzSGoVZS2usxE2cuR9FULHpCg/HfbRYXdrFW93vFz2yMNLX4Xb/G5LTgAujfSfiOfMng1zneLNYUq3ctx+cS1f6E95AiGNVVZWxsbGvvbaa2891K1bt6CgIL1eHwjNA/+rAWkMAABAKYEQd06cODF58uTi4uLyhwoKC/r27cswTFJSktqtAxUgjQEAgIaonsZsNtvMmTMPHnS/9DopKYlhmL59+5aXl6vSMFAR0hgAAGiI6mns0qVLn3/+eWlpqdv0W7duRUZGPvXUU55BDR57SGMAAKAhKqYxm812/fr1wYMH9+jR49q1a64336+urr5y5Urr1q0ZhunevfvZs2crKyvVaif4H9IYAABoiIpprLy8PDk5ecaMGTNnzly1etW9e/ecL+Xn56/fsH7mzJlTp079/vvvV/6ykrv5BWgE0hgAAGiI6kcqVVFVVfXnn38eOHBg7969e/fu3b17904Xu3bt2r9/f3FxsdrN1C6kMQAA0BDNprEzZ86sWr1Kp9MxDNOzZ8/hLvr06fPcc8/hQZkqQhoDAAAN0WYa45SWlkZFRTEMk5KyzXV6UVHR6NGjT506pVbDAGkMAAA0RMtprKysrF27dgzDbNu21e2l48ePZ2RkqNIqYJHGAABAU9RNY3aH49rFiwe3bLbcueP/2ktLS3nT2LVr1yorKx0Oh/+bBJyal8YkPbeEPDNlUZTPOREqlqYW0XmkPq0FAAB4qZvGLv7xx/ZmzU7WqpXco0eWxeLn2p1pbPtv250TrVbrvHnzCgsL/dwYcOXXNEZ+VprQRLf3+iiNUT61jaYWmjQm9S2ujaEPggAA4EbdNJY8efI9hmEZ5jjDjBs58vDhw/n5+X7bKeVMYxMmTNi2bSv3M3PmzD59+pSUlPinDcDLf2mMJn/ImEdSpaKvkvMfTVzjLZOcLz3fRZmxaHIeAAC4UjeNndy9e9ezz2YwTFydZ9q0aBMaGhodHf3ZZ59t3rL51q1b1dXVPq3dmcbeeOON0Q/17t27c+fOns8GAH/yUxoj5x6WLo0RJrq+KoqyVbxpjHdmobhG7pG8ZCY6nfwSAIDGqZvGrFbriEEDO4U2Da9rmj1735Ejh6dNm9ajR4/w8PDGjRsPGDBg8eLF58+f91E2cqaxlO0pzol5eXmTJk3CkUp1qZnGKLOLNwFLNG+5lSCaxnjrFXo7uXZJ04VGRlJpAACgbhqrrKzs8dpro0Z/8eW4fS1aLL51q4hl2fLy8osXLy5btmzQoEHNmzcPDQ3t3r37lClTDhw4kJubq+BxTN6z+B0OR2pqKvaNqcsfaYw3HNDEC5o3sgIRijyzZ4wjFCUabshhTmhOynxJLhmBDABAEnXT2P3791u3br148aK7d4tbtVo8+v/tqqqyOV+12Wx37txJ2Z4yduzYjh07hoaGtmnT5tNPP920aePNmzerqqq8rF3omkpOVVWV3W73sgqQp4alMdGiPH8nlCkpjRFiEzmNeR+e6NtMWSAAgGapm8bOnz/foEGDvXv3siy7es15nW7O7t38d/nKz88/duzYjBkzXn/99YiICL1e379//wULFpw9e1b2GfeENFZaWpqamopHlatFzTRGiDVCbxSNOPQzkMv3LIoQeoT2eJFbJVSv50uib5dUIACAlqmbxrb/tj0iIuLq1assy5aWVr37brLB8EtubhnhLRUVFZcvX175y8oPPvigRYsWDRs2fPnllydNmpSampqdnS1pb1Z5efnf5409ei/+6urqZcuWrV23Vl6nwHsq7xsjxy9JaYlQLHlmyldpXpKUEYX65TndrSihzEdToNs8CG0AoDXqprFZs2Z16NAhPz+f+/PUqfthYfGzZh2jOTnMbrffu3fPbDZ/+eWXnV/qHN4wvF1Uu09HfLpp48aMjAzybi2r1Xrr1q3NWzY/88wzDMMYjcaZD02fPn3o0KEtW7a8fPmyMp0E6dS/ppKws4ryT8+wQmgDIbqRy/cmjXnWSIOmKEJPyWTsbwMAeAyomMbsdvuwYcOMRqPNZns4xTFjxpHw8ISzZx9QFmJjbVmlWUeuHZm9cfYrsa8ENQtinmFCwkLeeuuthISEoyePZjzIKK0udbCPxLvKyso9e/asWbtm4cKFCxcunD9/fuKjtm3b6uv7awCBymlMKM3w7vih2Q8kmi0I0Y0m7Xm2WWhOSRGK3GykMQAApaiYxkpKSl599dVx48a5TszJKe3cecXgwZvLygTDUFl12aWcS2svrP1/uz7vvrr7/29JVHhieEhCSJOFTSLmRrT4vkXExxG6Lrr/hP0n+PngkJYhnQZ3+mD2BwsOLDhy/cjhPbsOm80lxcW+7x/Ip+bdXwm7qUTfLvSS1DRGeKNoxuINkeSW+CGN0acrwn5EAIDHlYpp7P79+02aNFm+fLnbdLP5L51uzrpfL7pNL7eWn3lwZtbRWd1Xd49IiIhMjHx97etf/v7lorRFe2/svZR9KaMgI7Mw837p/dvFt2/k37hy40qKOeXLcV/+t9N/n3r+KeY55oVmT+4Lqn2idu3k/33xoCjLT/0E6dR8MhJ5Bprpni9JSmOUE10PL/LO47lLTyjo+DqNIV0BAJCpmMbS0tLCwsIOHjzoNr262jZypLlt25/v3Pn7FqyFlYXJV5Lf3PBmyLyQlotajt41ekv6lhsFN8qqSef7OxUWFv558s+4H3/69rnnWYZhGeaHOkz0h+1nJ8/OfJCpbKdAEYH11HCpCYawQ0tofpq3eO63E+VZFHlfIH2zWeG0R4h9AADAS8U0tn7D+kaNGmVk8NzS4q+/8po1Wzhu3N780oJfL67rvrp7/Tn130l+J/lKsqVY5sPF7SybMnnqYabWeYaZ2KxZi/CGQf+uHd4mYtTYUbt27bp//77z9DVQXWClMQAAAJ9SMY1Nnz49Ojq6WOAUrqU/n66rm/3KlJgG8fWGpAw5eOtghbXCyxp37brc6pkPVseacrdvy9q2ddf0aaNffqFhy9A6/6nTrHmzYR8PW71m9bVr18rLy72sCLyENAYAABqiVhqz2WxDhgwZMGCA1Wr1fLWgouDb3dNqNXn/yeajks/sqLYrc3nj5CmH2jeZV2Dezx4+xB45wm7c6Njw61XL1c+Xf/7km08ykcwTuiciwiN69+49a9asEydOFBQWKFIvSIU0BgAAGqJWGisrK+vcufN3333n+dLF7IvGDcbwxIZf/Dw7LDRx4YJTrBKPpiwtrXr55ZWmPgsc+/ezhw+zR46wiYnsmTMsy1od1r039768/OWnxj/11rdvxQyLiYqKCgkJ6dix45dffvnbjt8sFgtvagQfQRoDAAANUSuN3bp1q0mTJqtWr3Kd6HA4tl/b3mxhsxeXv3j49iGrzfbtpAONGs2/ciXH+xrPnn3QMGTu9lGJ7Nyf2MWL2fW/srNmsQX/7P2yFFs+2/VZ/fj63+z75vqd6/tS902aNOmVV15p2LBh8+bNP/zwwxUrVly5cqWsjOrSAfAG0hgAAGiIWmns2LFjDRs2PHr0qHOK1W5dcXZF/bn1P/7t43tF97iJ9+4Vd+iwbOjQlMpKb3dNLVjwZ9OmC+9m5rFZD9gjR9jly9mtW9hHb/pfYa1Yenpp/bn1R5hHFFQVsCxbUlJy+vTphQsXvv32202aNGnYsOHrr78+c+bMY8eOFRTgOKavII0BAICGqJXG1q//NTw8/Pbt29yf1fbqOX/Mef6n579K/aq46pHz+jdvuVK37k/btqV7U11Vle3ttze+//5Wq/XhgywdDpbv+UsO1rH96vbwhPBBWwZllfxzT7Lq6uobN24kJyePGDGiXbt2ISEhHTp0GDNmTMr2lLt37+I4prKQxgAAQEPUSmOTJ0/u0qVLYWEhy7J2h/3nUz8/N/u5mUdnel44WVFhHTIk5YUXku7fl38D/Rs3CvT6+StWnKWcf//N/Y3mN/oo5aOCCp4dYDk5Ofv37586dWq3bt3Cw8ObNm363nvv/fzzz5cuXcJxTEUgjQEAgIaoksbsdpuf38sAACAASURBVPvAgQM//PBDu93OsmzyleR6c+p9e+DbSiv/o74vXcrW6xMnTz5ot8s8n3/DxkthYQmSzj/bfX136LzQL3Z/QbjHbGlp6fnz5xcvXvzuu+9yxzF79Ogxbdq0w4cPOx+FDjIgjQEAgIaoksYKCgs6deo0depUlmX/tPwZkRgx0jyytKpUaH6HwxEffyIkZN4ff9yVUZ3N5hg+fEfPnmsrKiQcT3SwjvWX1tedU3fuH3PtDjt5ZqvVevPmza1bt4waNap9+/YhISHt27cfPXr01q1bbt++jQeQS4U0BgAAGqJKGrtx44Zer9+0cWNueW6PNT26r+6eVSry1Mj8/PIePVa/+eaG4mL+/WcE2dmlbdosmTXrqPisj7I77DOPzmwwt8HeG3vp35WXl3fo0KEffvihR48e4eHhjRs3HjBgwJIlS86fP19aKpg4wRXSGAAAaIgqaezo0aP16tX748QfXx/4OiIxIs2SRvOu/ftv1qs3Z9myM1KrS03NDA2dd/z4HektZYsqiwZtGRS9NPp24W2p7y0rK7tw4cLSpUsHDhzYrFmz0NDQ7t27T5ky5dChQ7m5uQ6+awiAgzQGAAAaokoaW/nLytYtWycdSGowr8Hys8sp32W12v/3v99btFh0/bq0U7K+/fZAx45JBYUyH6z0V95fLRa1MO0xWe0yL5y02Wy3b99OSdn2xRdfdOzYMTQ0tG3btqNGjdq0aePNmzerqqrkFfsYQxoDAAANUSWNfTXhq1YdW3Va0qn/pv4lVSX0b7x1q7BNmyWffbazupr2Cd8lJVVdu6783/9+l30FAMuySWeS6s2tt//mftklOOXn5x89enTGjBk9e/YMDw/X6/XvvPPOggULzp07V1IiYSgeb0hjAACgIf5PY1VVVQMHDPxXh3+FxoeevHdS6tvXrL2g083Ztes65fynT98PDZ23w3xNakWuiquK+23o12tdr6LKIm/KcVVRUXHp0qXly5e/9957zZs3Dw0NNRgM33333b59+3JycrirTTULaQwAADTE/2msoKCgQ4cOzCvM+H3jRa9V9FRaWj1wYHLXritzcqju7JWYeLJZs4X37sm/Vxln/8399ebUS76c7GU5nmw22927d3eYd5hMpk6dOoWEhLRp0yY2Nnb9hvU3btyorJR81cJjAGkMAAA0xP9pLCMjQxeiqx9b/3LeZXklnD59PywsPi7uqOjBx6oq25tvbvjwQ5db8MtVaa0ctGVQz7U9JR1alaqgsOD48eM//vhjr169IiMjIyMj33rrrYSEhDNnzhQXexsoaxCkMQAA0BD/p7HU1NSg54I+X/65jB1jHIfDMWPGkbCwhDNnHpDnzMgoiIxMXPnLOXkVudmTsafenHp7MvYoUhpZRUVFenr6yl9WfvTRRy1btgwNDe3atevEiRN///33rKysx/44JtIYAABoiPdpTOqdGhYuWvhUg6eOXDniTaU5OaVdu64cODC5rIx0Y9X16y+Ghyekp+d6U5dTcVVx99XdY3fE2hy01xB4z263WyyWnTt3jh8//sWXXgwNDW3VqtWwYcPWrlt7/fr1igqZF4oGOKQxAADQEC/TWFFR0foN62fMmDFy5MiRI0eOGjXqs4c+/fTT4cOHr1231nV+q936/oj3277UtrCk0LuGs2bzXzrdnHW/XhSawWZzxMbu6NVrbWWlYo/0jj8R33RBUxn3HlNEYWHhyZMnf/rppz59+kRGRkZERPTr12/evHlpaWlFRYpdXhAIkMYAAEBDvExjdru9qKgoNTX1qaeeYhjmhx9+SNmewv0sX768Q4cOMTExrvPfLbwb8d/IYSNivd+5VFVlGzVqZ5s2S27f5g922dmlrVotnj37uNdV/eNyzuX/iw9be2Gt+Ky+VFlZefXq1bXr1sbExLRu3TokJKRz584TJkzYtWvX/fv3bTb/7brzEaQxAADQEEXOG8vLy9Pr9QzDHD36yNOHTp48yT2M0mn3xd2169WOHziY3bWLPXuWvX2b9eJhQdev5zdrtnDcuL28J+n//vuN0FCZj7YUUmmr7Lm253DzcH8erCRwOBwPHjzYs2fP119/3aVLl9DQ0BYtWsTExKxaveratWs19zgm0hgAAGiIImksNzeXS2OHDh1yTnQ4HNwuHNc5f9j8Q+2na+2Y8BW76hc2MZGdPp39+WfWi3PSly49Xa/e3AMHeHoxceL+F15IKpR7C34h0w5P67CsQ0FFgbLFeq+oqCgtLW3evHn9+vVr1KhReHh4nz59Zs+effLkyYLCgGstGdIYAABoiO/S2N69ewsLHzmGWOWoemNa36eCn7i86hf26FH2yBF26xb2559ZL57YWFRU2a/f+tdeW1NQ8EjqKi6u6tJlxbhxexV/HOSejD3/Fx925r7kx2X6TVVV1fXr19ev//WTTz5p06ZNSEjICy+8MG7cuB3mHRaLpUYcx0QaAwAADVE2jR0+fJibUlBY8M033+Tk5LjOlv7XBUPXkJf+88yNdWvZw4fZw4fZ1avYlG1e1n78+N2QkHkJCSddc9epU/dDQ+eZzX95Wbinm4U39Yn6dRfWKV6y4hwOR1ZWVmpq6sSJEw0GQ2hoaPPmzT/88MOVv6xMT08vLy9Xu4GCkMYAAEBDlE1jffr0iY2NjY2NfeONN9q1a1dQ8M8BspLS0k2DBmYyzGWG2dR/QL55r+3gIXbxIvb4UULJNGw2x3ffHWjUaP6lS/+Ev/j4E82bL7JYeO6YWl5enpGRceDAgVOnTuXl5UmtrqSq5L9J/512eJpXjfa7kpKSU6dOLViw4K233mrcuHFYWFivXr3i4uKOHz/u+jEFiMcwjUVHR6vdBAAACFDKprEff/xx9+7du3fvXrx4cd++ffPz853z3M/O3qRvxDKMg2E+rx3WrvHMd19e+G23aavjdh06dOvWrcLi4krZd8y/f7+4Q4dlQ4emVFRYWZatrLQZjes/+ijFZnukQKvVmrI9JSYmZsyYMbGxsSNHjhw4cOC0adOysrLo67Lare9tfe+jlI9k371WXdXV1Tdu3Ni0aeOIESPatm3boEGDjh07jh07dvtv2+/evWu1KnY3EG/UgDQWTcd1fhVbCwAAgUzZNOZ6TeXixYtdj1RWVlX9bBq+kWF2PvPM4nFx02ce/fjj7YZXfmnUaH5kZKJen9ip0/IPPtg6ZcrBNWsvnDx57/btwuJiCY9o3Lo1Xaebs3nLFZZlr1/Pj4hIXLX6vOsMpaWl33//fePGjVetXlVSUsKybFVV1cmTJ1986cXevXtnZGTQ1/W/3//XfU33KlsV/VsCU3Z29v79+ydPnvzKK6+Eh4c1bdr0/fffX7Zs2eXLl8vKSlmWtTns9ywW/18EUAPSGJln9uKdwpvbAABAa3x3Fn9mZqbbHRbiNsc9+USt9cuXV1urWZa12x0lJVX37hWfOHF3/YZLP/xw+L33tnbqtLxZs4UNGsxt1Gi+wfDLBx9s/eGHw8mbL//5p+XOnaKKCqvQsykrK60xMSkdOy7Lzi5bv/5SRETC1av/HIW02Wxz5sypU6fOlClT3M7rP3DgwFNPPfXWW2/l5tLesn/KwSkdl3WssNbU+0d4KikpOXv23MKFi9555x29vlFISMNevd6Ii/tx/fffb27WbMNrr107e5Zcwl9//XX48OHU1NR9+/alpqZyu0iPHTt29+7dqirJsfVxS2O8wQt7zgAAgOO7NObpm0XfPF3vmSvp6UIz2O2O0tLqzMyC48fvrvv1wsSJ+wcOTO7ceUV4eEJoaHyLFgu7dl05dGjKrFnHNm+5curU/ays0tLSf56MlJ6e27jJgglf//7BkA29+/5aWfnPxYOnTp36z3/+Exoaev36dbdKq6oq3377LYZh5s6dS9nfn078GL2sbalN8uPD7XaH88dmc1RUWMvL//6pqLCWllYVFla6/FTk5pbl5JQ6f+7dK05Pz71yJcf5c/LkvcOHbx0+fJv72b//ZkrK1a1b07mfbdvS16y9sHTpaefP4sWnpk8/MnXqIe7n++8PffVV6qefmj/9dOdnn+367LPdn3yS8t//zvn3v0cyzECGeXU+U8vBMLkMs274cPKlmBkZGWaz+YUXXmAYJjIycujQobGxsZ988knv3r0HDBhw5MgRSRe31pg0JnRo0jONCU3knR8AADTFn2nMNNnUOqp1Xq6EE+ftdkdBYcXNmwVHjtxevvzMN9/se/fd5HbtlkZGJoaHJzRpsqBHj9UjRuyYPft4yvarFy/lfDNha5+g/44Nipg2bEr1w1Og7HbHt99OZhimd++++fnFZWXVBYUVLimnbOrUOIZh/vvfzpcu3bl5s+DmzYLr1/MvXcpx/ly8mH348O19+zL37cvcv+/mZwvmhI7qvmTFsXW/Xly77sK6Xy+sXXdh4cK0OXP+mDv3758ffzz21Vep48fvdf6MGrUzJiaF+xk6NOWjj1L69Vvfu/e6Pn1+5X5efXV1x45Jzp8OHZY1brwgPDzB+RMRkRARkRgZ+feP6+/OH71+fqNGj/w0bvzPT9OmC154IalLlxXcT+fOK3r0WP322xv7909+993N77yT/PrrKzt2nPHvf3/AMD1r1+o2q/YT5Qxzi2E2ffklzVlyEydOZBjmgw8+4P6srq4+ceJE27ZtQ0NDDxw4QP+516Q0xvsnb9JCGgMAAF6KpLE7d+6EhIQwDLNz506heex2+7BPhhl6GrjDlLJVV9uKiir/+is/NTUzKenMuHG/9+u3Pjp6aWRkYv0G8a83MN5gGCvDbA3+j7H3vLffTn777Y1G4xqdrj3DMM8/37l791Wvvrr6xZeWR0cvbd+e+0kKCxvGMAzDPBkWNqlRowWNGs1v+H/xzz03+7nnfnruuZ+4X0JC5oWFJYSFxYeHJQTX/b72s+OaNE1s3nyh8ycqasnDApe2b7+0Q4dlXbuufPnlf3569143cODmhz/JgwdvHf3/do0du2fs2N1jx+4eM2b3N9/smzXrmPPnxx+PLVt2ZvWa886f9Rsumc1/7dx53flz6NCtEyfuOX/S0izXruVdv57v/Ll3r7igoNzlp6K4uKqkpKqkpKq0tKqsrLqqylFdbc/NLTh8+Nj3309/+eVuISGhbdq0iY0dvjE5ec/aNb/07bvx00/v36Z6NOeUKVMYhvnwww9dJ65dt5ZhmAEDBtAfsnys0pjozLwvIZ8BAGiHl2mspKRk165dX3/9df369Z999tnBgwcnJyffvcvzMKLS0tJXX321y6Au5VaFb3Nls9nz88uvXMlN3X/z276xmQzDMsz2J58a2D9xyJCUIUNSBg1a9a9/1WUYpk2b3l9/ve+rr1KnTz+SkHAyIeFEQsKJxMQ/hw37kWEYhmG+/HJh8ub0TZsu7zBfO3LktvPn6NHbZ87cP38+i/v5/JcZbX7okX79AbcjjfvJyirJzy93/hQUVlRX263Wf35sNofrkUqhE+D8KS8vb//+/ZMmTercuXPDhg2jo9t9/vnn23/bbrHcsz98QEKlzWalPsjIm8b27t3LMEyHDh2Ki3luOMLrsUpjQtdaIo0BAADHyzRWVVV148aNv/76KyMj48aNG9evX//rr794N7pZWVmRjSI7jOxQWMX/kG/v3bxZaHhp7oj6L373ROj098ZVV/+9JyYvL7dJk8YMw4wYMYL3jb/t2M4wTK1atfbs2U1T0eRD33Zd1cXq8Gonn1ocDsf9+/fNZvOYMWOio6PDwsI6der0zTff7N271+1uvTJwaWzIkCGuExcuXMgwzPjx4+3Uj8B6rNKY6MxC8wMAgEYocqSSxpkzZ/5d99/Nvmx2v/S+L8q3WIp79Vrbvv2ytDN3Yz/d2uO11eXlf583VlFRYTQauZTAey558uZkhmHq16+fLnyFgZPdYR9pHvnmxjet9oC4NRclm8128+bN5OTkYcOGtW7dumHDht26dZs2bdqxY8fcHmDlDS6NdenSJSVlW8r2lM1bNsfFxen1+v79+9+mO9bJqUlpjOYsft6JSGMAAMDxWxrbumVLrf/UenrC0+ezz4vPLVFeXtnAgZubN1/4558WlmVTtl9t+H/x5879fU9Xh8PBnV3eq1evsrIyz7cvXbqUYZiXX365qKhItK4Ka8Ubv74xds9YB6v+oUZR3IPbV/6ycvDgwU2aNImIiOjbt298fPzZs2dLS0sVr45LY3q9ftSoUZ999tmwYcNefOnFZ599durUqXfu3KEvpyalMcrp5KOTOFIJAKBlfktjs+JmPRn25DM/PGO+bla25OLiyhEjdkREJOzf/3df7t0rat580fz5fzrnOXbs2FNPPfXss89eunTJ7e02m23o0KEMwyxatIimuvzy/FaLW83/c75S7feFsrKy8+fPz58//80334yIiGjcuPHAgQOXLVuWnp7udhM4ZXFp7KOPPuL+dDgceXl53377bZ06dQwGA/0tdmtMGhMilMbcfvHcqeb6kh/aCQAAgcA/acxut3889GPDG4bWC1vPOjZLwZIrKqwTJqTWrz83JeWqc6LNZh8yJKVfv/Xcg5JYlq2urv72229r1ao1depUt4OV58+fb9CgQd++fSnv/nox+2J4Qvhv135TsBdKKSoqOnHiRFxcXI8ePRo2bNiyZcuhQ4euX//rjRs3qqv9cZYb71n82dnZzZs3Zxhm2jTah3s+bmlM9IYXyF4AAFrmnzRWXl7epUuXCV9N+HD7h+8kv6PUM4Wqq20zZx6tW3fOqtXn3TLW+vUXw8MfuR1/Xl7ekCFDwsLCkjcnc/uH7Hb7hQsXXn311ddee+3q1avupQtYe2FtZGJkRr6EJyn5Wm5uruulke3atRs9evT237bfu3dP0j1XvcebxioqKjp16sQwzJtvvmmzkW8i+7canMY893UhaQEAAJl/0tjdu3ebN2++etXqZeeWNV7Q+G4Rzy0wpLLZHIsXn3r++Z8SEk56Pm48M7OgceP5SUlnXCcWFxcvXrzYaDSOGTPGZDKNGzdu0KBBkyZNslgslJU6WMcI84jX171eXq3wfTqkcr00sn379g0bNlTw0kjZeNNYQWFBVFQUwzDfffcdZTk1OI0BAABI5Z80duLEiYYNGx4/evz0g9Mh80J2X6e6kQSBw8GuX39Rp5szdeqhqiqe3S1Wq33AgORBgzZXV7u/mp+ff+bMmW3bth45cuT+/fuS9h4VVBS0X9r+2wPfetN4b1itVu7SyE8++aRVq1YNGzbs3r37tGnTjh8/ruClkbJ99913bmmsoqIiPj6+Vq1aTZo0uXDhAmU5SGMAAKAh/kljGzZuCA8Pv3XrVkl1SZeVXcbsHmN30N56itfOnddDQ+PHjt1TViZ4OlRS0plGjeZnZhZ4U5Gb/Tf3159b/8BNCQ/5UURlZeW1a9dWrFjx3nvvuV0aWVIi+XGZvpCTk3P27Nlu3boxDNO4cePvvvtu1qxZ06dPHz58eERExOuvv37kyBH60pDGAABAQ/yTxqZOnfriSy8WFBawLDvz6MyWi1veL5F/17EjR27r9YlDh6YUFpIuD0xPzw0PT1i//qLsitzYHfaxe8Z2XtG5oELJhEfAe2nk0qVLfX1ppAynT5/etGnjwoUL58+fn5iYGB8fHx8fn5CQkJKy7ezZszS3DnGFNAYAABrihzTmcDjee++9wYMHW61WlmXPPDgTMi8k+XKyvNLOnn3QqtXit97amJ0tcrusigprv37rhwxJUeoZRPeL77da3Gr6kemKlEbAXRo5c+bMV199NSwszPXSSKu1Jt1yVjakMQAA0BA/pLGioqIuXbpMnjyZ+7PCWtF/U//e63uXVkm+++i1a3mdOi1/9dXVt29TnSMVH3+iefOF9+7RPh6RbMmpJaHxoeezlL97Lcd5aWSXLl3CwsLatm2r1qWRqkMaAwAADfFDGsvMzNTr9evX/+qcsjtj9/83Ryf1ll137xa99tqajh2XpadT3RiMZdmzZx+Ehs5L2U579wqC7NLsDss6fLbzM2UfiORwOCwWy86dO7lLI0NDQzt16vT111+re2mk6pDGAABAQ/yQxo4dO1avXr2TJ086p5RXl7+18a1ev/YqrqTda5WbW/buu8ktWiw6fVrCCWelpdWvvrp61Kid3h+sXJi2MHRe6NkHZ70sh8NdGrlp00bXSyN/+OGHALk0UnVIYwAAoCF+SGOrVq9q1qyZW0X7MvfVm1NvxdkVNCUUFVV+8slvERGJhw7dklr7jBlH2rRZInqSGVlGQUbzhc2//P1LL3eMeV4a2a9fv/j4+DNnzgTIpZEBAmkMAAA0xA9pbOLEiV26dHF7XLfVbv1i9xctF7fMLMgkv7283Prll7+HhMz7bcc1GbX/8cfdkJB5e/bIv3V+tb169K7RrRa3ulkoc6y4SyMTExOdl0YOGDBg2bJlV65cCbRLIwME0hgAAGiIr9NYdXX1gAEDPvroI8/z0DMLMlsvbj3cPLzcKnhf+6oq27Rph+vWnbN23QV5Z7IXFVW++NLy8eP3yj4Rfkv6lrpz6q65sEZ61Y9cGtmiRYuhQ4eu37BeO5dGyoY0BgAAGuLrNFZQWNChQ4cZM2bwvrolfUvdn+ouObWENyrZbI4FC/58/vmfFiz402aTf+LXpEn7O3ZcVlAgZy/U5ZzLzRc1j90RS/8oJMKlkXa7V/e81Q6kMQAA0BBfp7EbN26Eh4cnJ/PfXcxqt07cPzF0Xujh24fdXnI4HGvWXqhb96dp0w7zPvuI3v79mQ0azJNxzlleWV7f9X1fXPHinaI75Dm5p0a6XRr51Vdfpaam5ubmau3+FN5DGgMAAA3xdRrbv39/RETEn3/+KTRDXnmecYOx7c9tL+dcdp3+245rDRrMHTdub3m54LOPKOXllUVHL508+aCkdxVXFY8wj4hIiDh255jQPNXV1bdu3dq0aWNsbGyrVq1CQ0MD6qmRNRfSGAAAaIiv01hSUlLTpk0fPHhAmCezMPPllS8bVhmcZ/QfPHgrMjLxk09+Kyys9L4Ndrtj7Ng9XbuuLC6uonxLhbXi631f159bf2v6VgfrvmeL99LIefPm4dJIpSCNAQCAhvg6jY0fP75bt27l5SInXV3Mvthuabvua7pfy08/ffpBy5aL3nknOTe3jPwuejt3Xm/QYG5amoVm5tKq0on7J9adU3fF2RWuBxmdl0YajcbIyMjGjRu/++673KWRlZUKpEZwQhoDAAAN8Wkas1qtRqMxNjaW5uz1cw/OvbiyU/SMnlHtFvbq+eu9u8o8zojz4EFJq1aLZ80SPObolFeeN2rnqHpz6608t5LbK+Z6aWR4ePjfl0Zq6amR/oc0BgAAGuLTNFZQWNC2bdtZs2ZRzp96Nu2JJqOY+kPnmFdaHUoGHTvLxg439+y5pqyMdBba5ZzLb296W79Av/nK5uyc7AMHDnCXRjZs2BCXRvoT0hgAAGiIT9NYenp6o0aNUlK20cycnV3a/+3kNq1/fn/h/+rPq/f1vq9zy2ifRymiqIg9fy7ZlBRS76cLF7J5Z7E6rFuvbW2xsEXkjMgJiyaMHTu2ffv2ISEhL770Ii6N9D+kMQAA0BCfprHff/+9QYMGFy5cEJ2zsLAiJialUaP5R47cLreWLzuzLDIxstuqbnsy9nj1MKJbt9i1a9g5c9j5ibcTVzUJmTV/QZrnXNdzr3+x4Ysn3nuCiWKei3guPCwcl0aqC2kMAAA0xKdpbNGiRS1btiRfUMmybGlptcm0JyRk3s6d150TT98//W7yu/Xn1B+9c/Sl7Et2h6yDgwcPsnFxbGoqe+iQ9cChD3osfsO4rrTi74OVlZWVV65embVwVtPuTZlnGF2IztjXmJiQeP78edHLDsCnkMYAAEBDfJrGPv/889dff52cbKqqbFOnHtLp5qzfcMntpdLq0lXnV7Vd0jY8IXzM7jFnHpyptku899jdu+ycOeyBA+zBg+zhQ4s++X7Av9qsjR1xeN/+hPiE13u+/nyD5xmGYRimTu06bdu2HTBgwIwZM5YuXfr777/n5+dL7S8oBWkMAAA0xHdprKqqqnfv3p9++inhdCubzZ6QcPL5539asuSU3c4/m6XYMv/P+e2Xtg+ZFzJg84A159fcKrxFe/jSamUXLWLNZvbIkRsb1m9o2qScYR4wTLcng5j/MPUN9Qd8MeCJJ5+oVatWfHz80aNHjx07tsO8Y/To0SEhIQaDYftv23GumCqQxgAAQEN8l8ays7PbtWuXmJgoNIPd7vhl1bm6dX+aOfNodbXIs4+ySrPWnF/Tf1P/8ITwJguaDNoyKOFEwh93/7hXfK/CKvgASgfryN2cfODLcZOHxLzQtOlUhrEzTBHDfPZS4+nmuMvZl2/fvV2/fv06deqcOXPG+S6r1bp5y+bnn3/+2WefTd6cjEDmf0hjAACgIb5LY5cuXWrQoMHu3buFZkhJuVq//twJE1LLy2nP06+yVV3OubwobdGgLYNaL25df2791otbd1vdbej2od/s++bHYz8uOrVo0elFi9MWJ+5LnLRk0nux77du0fSJJ2rVCqvdoE/IsKGvbG7WNLlr10t//H3jsXv37tWvX7927dppae5n98+aNYthmKZNm2ZkZMgbAZANaQwAADTEd2nMbDaHhYVduuR+Nhhn//6b4eEJw4fvKC6Wcxd7u8N+v+T+0dtHl55eOiF1wuCtg3v+2rPdknbPTnq21oBaTBuGeY4JrhvcvnP74eNHzNk0x3zRnFGQUVJVevfu3Zzcf26cQUhjt2/fbtq0KcMwP/74o4wWgjeQxgAAQEN8l8bmzZsXFRWVnc1zf6+0NEuzZgsHDdqcl6fApYs2q+1y+uXEJYm93ur1bOizoWGhxn7GxITEM6fPFBQVkN9LSGM2m23w4MEMw7z99tt48JGfIY0BAICG+CiNORyOzz77rHfv3p7PDrpyJSc6emmvXmstFq+eIseefgAAIABJREFUfVRWVnbu3Ln58+cbjUa9Xt+kcZOBAwYuT1ou6amRhDTGsuzw4cO5g5U5OTneNBWkQhoDAAAN8VEaKysr69mzp8lk8qiu4JVXfunceUVGhsz7RxQWFnJPjezRo4frUyMzMzNlPDWSnMZGjhzJMExkZGRWVpa81oI8SGMAAKAhPkpj2dnZTZs2XbJkievEBw9K+vVb36bNkvPnJYebvLw87qmRXbt2DQ0N5Z4ambI9xWKx2Gwi12MSENKYw+H46KOPGIbp169fRYXgZZvgC0hjAACgIT5KY2fPng0LC9uzZ49zSkFBxUcfpTRqNP/48buUhdjt9gcPHpjN5jFjxjifGvn111+npqbm5OQocuMJQhrLy8vr2LEjwzBTpkzBTS78DGkMAAA0xEdpbNu2rZGRkVevXuX+LC2t+vzzXQ3/L37PHvG7RVit1lu3bm3atDE2NrZVq1ZhYWHdu3efPn368ePHCwpFzsqXipDG1qxdU7t27fDw8MuXLytbKYhCGgMAAA3xURqbPXt2u3btuEduV1XZvvvuQL16c5KTSbGmqqrq2rVrK1asGDx4cJMmTSIjI3v37h0fH3/69OnS0lJfNJJ9mMbq1Klz+vRp1+nnzp1r1apVnTp1li1bhh1j/oc0BgAAGuKLNGa32z/++OP+/ftXV1dZrfY5c/6oW/enZctO8z77iLs0csGCBdylkY0aNRowYEBSUlJ6erof7itx8eLFp59+mmGYbdu2PnjwICcn5/r16z///HNUVFTTpk1/WfVLVVWVr9sAnpDGAABAQ3yRxioqKl5++eUJEyY4HOzy5Wfr1v1p9uzjVqvddR7npZGvvfaa89LIdb+uy8zMrK6W+GhwWQoKC5I3J48ZM6Zx48Z6vb5r1659+vQxGo0jR44cPXr0smXLMjMz/dAM4IU0BgAAGuKLNHbv3r0WLZovW7YsZftf9erNmThxf2Xl35c9ul4aGRIS0rZt288//9z7SyNlqK6ufvDgQVZWVk5OTk5OTnZ2dlZWVlZWVnFxsd1uF38/+BLSGAAAaIgv0tip06cbhodPmrRCr1/4xRd7iooqsrKydph3OC+N7NSp01dffcVdGql47fAYQBoDAAANUTyNFRUWLpg0qWGdZ//zzASDYf6SJauGDx/OXRrZrVu36dOnHzt2rKBA4Usj4TGDNAYAABqibBqrrK5O+frrU7VrH2WYToz+ueci9Xp97969582b59NLI+ExgzQGAAAaomwayy0o+LVNG5ZhWIb56bln5y9a6J9LI+ExgzQGAAAaomwaq6qu/m3KlKN16hyrXfu3iRNtOB0eZEEaAwAADVH8vLHS0tKju3Yd2bmzpLhY2ZJBO5DGAABAQ3x0L34AbyCNAQCAhiCNQQBCGgMAAA1BGoMAhDQGAAAaIjuNlZSUpKWlrVq9asmSJcePH8/Nza2srLx48SKesQ3eQxoDAAANkZHG7Hb7gQMHjEZj7969p06dOmfOnPj4+HHjxg0ZMmTUqFF+fsARPJaQxgAAQEOkpjGHw7Fp08b69eu///77d+7ccS2nd+/e/fr1w93FwHtIYwAAoCFS09jp06dDQ0ObNm1648YNt5euXr36xRdfFBUVKdc60CikMQAA0BBJaay6ujo2NpZhmPHjx3ueH2az2ZKTk+/fv69oA0GLkMYAAEBDJKWxa9eu1a9fv3bt2rt27eKdISsrCw+jBO8hjQEAgIZISmN79uypU6fOE088cerUKd81CQBpDAAANERSGouPj2cY5sknn7x8+bLvmgSANAYAABoiKY3NmTMHaQz8AGkMAAA0RFIa27lzZ+3atZ944onTp0/7rkkASGMAAKAhktJYenq6TqerXbv2bzt+812TAJDGAABAQ6Te4WLEiBEMw4wYMcJqtXrOUFpaWlhYqFzrQKOQxgAAQEOk3v31/PnzkZGRTz/9dGpqqttLJSUlBw8ezM3NVa51oFFIYwAAoCEynlP5+++/t2jRIjIycuUvK7OzsysrK0tKSjIyMsxm87Vr13zRSNAapDEAANAQGWmMZdlr166ZTKY33nijV69e77///tSpU9euW2uxWBRvHmgT0hgAAGiIvDTGKSwsvHr16tWrVwsKCux2u4KtAo1DGgMAAA3xJo0B+AjSGAAAaAjSGAQgpDEAANAQpDEIQEhjAACgIUhjEICQxgAAQEOQxiAAIY0BAICGII1BAEIaAwAADUEagwCENAYAABqCNAYBCGkMAAA0BGkMAhDSGAAAaAjSGAQgpDEAANAQpDEIQEhjAACgITcBAhJ5uUUaAwAAAFAT0hgAAACAmpDGAAAAANSENAYAIJPZbI6KilK7FarRePdZjAAoB2kMAECytLQ0o9Go1+sZRotrUY13n8UIgNKwGAEAyJSUlKTljbHGu89iBEA5WIwAAGTS+MZY491nMQKgHCxGAAAyaXxjrPHusxgBUA4WIwAAmTS+MdZ491mMACgHixEAgEwa3xhrvPssRgCUg8UIAEAmjW+MNd59FiMAysFiBAAgk8Y3xhrvPosRAOVgMQIAkEnjG2ONd5/FCIBysBgBAMgUFxfHMIzFYlG7IerQePdZjAAoB2kMvGWxWAwGQ1RUlE6n0+l0ZrNZ7RZJU0PbX0ObzanRjXeKiYnR6XQMw0RFRZlMJqHZLBaL0WiMioqKiorS6/VRUVFu/TWZTMHBwVw53DzBwcGEAskMBoNnOHCtwmAw6HQ6o9Eor3wnxbtvMBicS4W8RYK3764Ndg6vTqcjz0zDFyMQExPDzWwwGNLS0iS1h/JTVnwcQBFIY+AVi8Wi0+mca42oqKi4uDh1myRJDW1/DW02p0Y3XqqkpKTg4OCkpCTXKQzDuHU5JiYmODjY+afZbI6JiZFXHcMwvFHGaDQ6q7BYLAzDyA58ktpD030uOjj/jIuLc30LfV1CfTebzTqdzrXStLS04OBgqXFHBsoRMBqNriPAsqzJZGIYRuo4kD9lFccBRCGNgVeMRqPrf7/i4uJq1n6OGtr+GtpsTo1uvCRpaWm8+cBoNAYFBblO4fYJuU6RNybcrhredMvtm3H+GRwc7P3uMTL67nN7jJx/ms1mGflAqO9mszkoKMizQF93n5UyAm6fDofbfSWpRsKnrOI4AA2kMfCKXq+v0V/mwGx/XFwcuVWB2WxOjW68snQ6necmlmVZs9nstttDp9PJ2xnmijvIJXR8Kjg42FkFt9dEaL+L6CdIib77rm2Th9D34OBgg8EgqbQAGQFu95ikYEr4lGWMA/gT0hh4JSoqKigoqObu2wjM9otuDAKz2Zwa3XgFeW5xnTwPIbnu1LFYLDL2DFksFm4/Cu9eFq4KrjEWi0Wv1xMOUyqSRWR3XwZC37nDglLPi1JlBDzn5Bov6WCl0KcsbxzAn5DGwCvcaQcMw+j1+kDYvup0uiA+er2ed/5Aaz9HdGMQmM3m1MTGS11saMTExAjd+8BtY8z9yR2t0+v1QUFBMraaBoOBK9D1zCEn7pAZdzw0KCiIvCNKkSxC330utTgDqIzDlIS+GwwGt2OCNPw8Atyn49lr7oJN+u8I4VOWNw7gT0hjoADntTzeH21RRaC1n3JjEGjN5tToxiuIsP1z22vids8qGXuJuIDrfLtnCHCtgruKghA0Fcki9N3nGqx/SOrtu8h91+v1bmfH01BlBDxn4/IcfTQnfMryxgH8CWkMFMP9t95zIuEtMTExruuatLQ0rhDuGmy3sxzS0tK4E8C5K7AUvxDP+/ZzkpKSYmJiTCYT11TnDKK9c90rwzCM83fyoQpfN9vZPMLg+7rx5KHzpuXyMETcPISNsdteE7cLKoVwNz7gfYnLMc57KHhuwrl7MTj/9Lz8UNInqGz33XZo8S4wsvseFRVFeSK8uiPAG5W4rnlOFxoNwqdMPw6gFqQxkM9tjW8ymdzWPuSzULn96m5rupiYGOe21vXsIm5b6/pe76/P91H7XduZlJTkun4U6p0b8n/N/d9sSYPvo8YLDZ2CLVcW4UCV2/WMnhdU8nK7DYRTUlKS69t5z9B3i7DkE5J8fZzOrftuF1Tykt13o9EodWcb6/cR4D3Vj3DamdBoED5leeMA/oSPB+Rz+38bt9/CdYrhId63cy+5bR25+x9yvwc9vB6bu02O29t5d+BLOgFI8fabzWbP/4C63m2It3eeyBsDPzebfvB92nihBUORlvvivDFua+q5K447ROvWYLcRkxQZPe8XFRQU5FaC2zWbhKDAKnoOO2X3ZR+tFu071wzP8TSbzYS9toEwAnq9XuolkIRPWd44gD8hjYF8rrfMTktL0+l0rpu6pKSkuLg4bk8M73Exk8lkMpnc1jh6vZ5bO7iuEPV6vS9uEKp4+3lvye16ZRNv7zyRX/Vzs6UOvo8azzt0yrZccQaDwS0umEwmty5zu3PcNsb0KdDt5m0c7gbrblU4h4I7JEcYGaXu70DffXkfE03f2Ye7hVyriIuLCyJeKuH/EXBdALjLIaVGMdFPWcY4gD8hjYF83J4JbsVhNBrdvtXOtQnvvZS4PSJJSUluGx7u3CC3vSOE3UgB1f7g4GDPg486nc75v0/e3nkibwz83Gypg++jxvMOnbIt9wWTycSd/cMdjnTLjtxocKcouT4WiXJfkcFgYBjG7Uk7MTEx3GlP3KfAnXLHMAx3uymuFvLuEKWyCCvWfW45ZBhGxu3WaPruVhG34HGNIS8YfhsB56fDMIxzHoPBIPVaY8pPWeo4gD8hjYFPpKWlOVevcXFxbnvmuc0qd8aP62lDFovF+afruwhnQfmIvPbzttO5m0eodwHebL8NPqHxkhYMv7WcOxLKbQIf44c7CdF491mMACgKaQx8wu3SNtfrkrgnRjtfcj1/xfVEH+5wFfe7/1d28trv9kA6lmXj4uKcMwv1LsCb7bfBJzSesGCo1XLujqPcExW5TXKA3DvNPzTefRYjAEpDGgPluW34WZY1GAzOQ2Nuu8ddTyRyPZ/JZDI5z+/mTrZwLd+nj9bxpv2uRwC5wwfOhCHUu8Bvth8Gn9x4woKhVstNJpNzALlTdjTyuCeOxrvPYgRAaUhjoLykpCTuiJiT0WjkNpPcPXica7GkpCTuyjWLxcKdQ8OdQeJ5fi633XVecOfTI1Dy2s9N4S4SjImJiYuL87xuUah3Adtsjh8Gn9B48tCp1XK3M9609hBAjXefxQiA0pDGAAC85XlTCU3RePdZjAB4DWkMAMArZrNZ6K7rWqDx7rMYAVAC0hgAgFec90LTJo13n8UIgBKQxgAA5HN7NJPWaLz7LEYAFII0BgAgk9ls9ubpSTWdxrvPYgRAOUhjAAByWCwWt6fcaIrGu89iBEBRSGMAAHJwT/uOi4vjbq6h1+s19ZwZjXefxQiAopDGAAAki4qKYh4KCgqS8WzBGk3j3WcxAqA0pDEAAAAANSGNAQAAAKgJaQwAAABATUhjAAAAAGpCGgMAAABQE9IYAAAAgJqQxgAAAADUhDQGAAAAoCakMQAAAAA1IY0BAAAAqAlpDAAAAEBNSGMAAAAAakIaAwAAAFAT0hgAAACAmpDGAAAAANSENAYAAACgJqQxAAAAADUhjQEAAACoCWkMAAAAQE1IYwAAAABqQhoDAAAAUBPSGAAAAICaAiWNRUdHR0dH0093slgsRqMxKioqKipKr9dHRUWZzWbXGUwmU3BwMMMwznmCg4NNJpMizRat3bUBBoPBYDBERUXpdDrP2fxQe0xMDDe/wWBIS0vzvgEAAADgvZqdxpKSkoKDg5OSklynMAwTFxfnOltMTExwcLDzT7PZHBMT432bKWtnWdZgMOh0OuefcXFxru/yde1Go9G1dpZlTSYTwzDetwEAAAC8FyhpTIa0tDSGYTz3BhmNxqCgINcp3B4p1yne75qir51lWW7HlWvtXu6aklQ7t/PMs0muCRUAAADUUoPTmE6n8wwZLMuazWa3HT86nU6RnWHyamdZNjg4WNkGeF87t3sMxysBAABUV1PTGG/s4FgsFoZhXM8Mcz1+Z7FYvI8gkmp3a4D3ZNTuOTN3WNPLg5Umk4kLhSaTSalT8QAAALSmpqaxmJgYhuFvvFsi4f7kjhXq9fqgoCCLxcL7Rp1OF8RHr9fLrp19GJ6cEVDoMKWPaueOaXrWGBcXx3usk74Z3Oloer2eu1BA8b2PAAAAGlFT05jBYPA8QYrjtuuI2wnkfFWRfVT0tbMPc4/+IaEg5dPaPefkIp1QMKVhsVi4E/IU3O0HAACgQY9hGnPbdeR2QaWfa2dZ1mg0ujbA+ysZpdbudkElh4uGXrZEr9fzFg4AAAD0AjGNid5jjCUerQsODjYajc4/PS+o9B597azHBZV+rp33gkrCmWeSBAUFYccYAACAl2pqGuPyhGcU4M5hcp3iGVCEzjenP2WKvnaW+oJKf9au1+sNBoOXzeDOUfPmWCcAAACwgZnGKBkMhuDgYNfz000mk06nc80HXGJwiyPeH6GjrN3ZAMV3IEmq3bX7FouFEMUkiYuLEzpgCgAAAPRqcBpjWdZkMnHnP3GHI912epnNZu6hQEFBQa6PRVLq6j9y7SzLJiUlcaft++KGZ6K1p6WlcbVz1xBwsxkMBkUeysT65hAwAACABtXsNAYqwp1jAQAAFIE0BgAAAKAmpDEAAAAANSGNAQAAAKgJaQwAAABATUhjAAAAAGpCGgMAAABQE9IYAAAAgJqQxgAAAADUhDQGAAAAoCakMQAAAAA1IY0BAAAAqAlpDAAAAEBNSGMAAAAAakIaAwAAAFAT0hgAAACAmpDGAAAAANSENAYAAACgJqQxAAAAADUhjQEAAACoCWlMZWazOSoqSu1WAAAAgGqQxlSTlpZmNBr1ej3D4FMAAADQLuQAlSUlJSGNAQAAaBlygMqQxgAAADQOOUBlSGMAAAAahxygMqQxAAAAjUMOUBnSGAAAgMYhB6gMaQwAAEDjkANUhjQGAACgccgBKkMaAwAA0DjkAJXFxcUxDGOxWGSXkJaWpmB7fK1mtRYAAMAPAjGNRUdHR0dHq90Kf4iJidHpdAzDREVFmUwmeSV4k+R4WSyWuLg4H8Umk8mEQAYAAOCqZqcxi8ViMBiioqJ0Op1OpzObzb5uW0Axm81Go1HZMtPS0gwGA8MwvhtMvV7vo5IBAABqokBMY5QsFotOp3PuaImKioqLi1O3SX6m1+t9kZnMZrNPT2XT6/VJSUm+Kx8AAKBmqcFpzGg0uu4ZiouL09S+MYvFEhQU5IuSTSZTcHCwL0p2lm8wGHxXPgAAQM1Sg9OYXq9X/DhdDWIymeQd8ouLiyOPm8FgoExLokXxMpvNPsqRAAAANVENTmNRUVFBQUGP9/4wk8kUFRXF/eJ2mj9vZoqJiTEYDDqdLjg4WGhkRCOUTqfj6jIYDEFBQYTjvzRpzGg06nS6oKAgZ/stFouXl5ECAAA8TmpwGktLSwsODmYYxkenT0nFZQ5Psk9a53KMXq/nDh3GxMS4vuq5a9BgMHDJKS0tjXDil2iEYhgmKSnJZDJxZ+YRZqYJdlyT4uLiXNOkT68SAAAAqFlqcBrjcEmFYRi3sMKKXbvndm+ItLQ0vV4fFBQUExMTFRXlttspLS2NO02N2/Pkn8sFnFeM8lan0+lcu2w2m539jYuLI/SdHKG4JOcsOSoqynNgKYuKiYkRagYX+ITeCAAAoCmBksaE7mpBebcLLki5TjGZTAzDCN3aisscboGAO8zH/e56DNRkMrlmjrS0NHn3BnPFELn2S6fT8Zag1+tdc5JraPPcbZaWlua6u45hGOfvboPgdjfa4OBgtyxIX5Tne127j31jAAAAnJqaxtzOOjKZTG5pzPAQb3XcS55nYjnzTVBQEJfkzGazZx7y2zlPhNO23HrnjFBcDCXseSLv0DIajdyZauzDE7wIzSMXRYhchKAMAACgNYGSxqRyOwTGHV50/pmUlMTdTZ73bHHupCjP+yw474PlGjL0ej3lcUnFzxsjn+3uehzQebcLs9nMpTFCXiRHKNddbqIXVxKK4gafN3L9/9u7nyNpWTWMwyxcujtVBEAEVk0ChGAMBnBWREEQhmEAZ20cpuFZUJ/l5x+k0Raxf1e9i5mebl8fu0fuAcRvr2cGAEBecm0U5yvv930vpZznjylDLCZXOS63tW27yElu0tgigkydZPez1npWgnAjhu5rl2/cTHl3G3LP6mv+NFaWpfup6xT09wJ6NuWipDv4bdvO34XpQlEAADDmm8a6rivLUimlta7rejEff2r7rbWLhUxd3mqapq7redaZL6Y6f9VXx9Rc4hFCbE6xclP4PS8vy3Lat+miy7Zt/TeJ8qcxN+brDuzhgOzhoKcQYlovY/KDd00AAMAj1zTmsYgR89nl7irF6Ufz8bL5/LD5ChGeqegnDcPgNu7y03qW1WEKtNZ6Lnh8rL3rEgAA+E1vS2OLvDWOo9Z6GpHUWs8jzrwPaT6NbD6UZoyZp4dhGK66AYAxZvrf3bhexJazu8WQS5+p9wIAgAd5Wxpr29YNRE7qulZKuZQ2X7eibVs3JDcMgxv3dJPMFre/HP+5B9F0keZVA5eLccCyLCOildv5S/bnHkQxAAAW3pbG8jW/dxAAAPgdpLFH4EbaAAD8LNLYI0xLnQEAgF9DGkvPTVZLvRcAACAN0lhi87t9AwCAH0QaS2kYhsP17gEAwLuRxlJytyGy1rqbGimluJc2AAC/hjSWTFVV4h9FUWit81o5DAAAXII0BgAAkBJpDAAAICXSGAAAQEqkMQAAgJRIYwAAACmRxgAAAFIijQEAAKREGgMAAEiJNAYAAJASaQwAACAl0hgAAEBKpDEAAICUSGMAAAApkcYAAABSIo0BAACkRBpDvK7rqqpKvRcAAOSNNIYYfd/Xda2UEoKPEAAAp9CUIl7btqQxAABOoilFPNIYAADn0ZQiHmkMAIDzaEoRjzQGAMB5NKWIRxoDAOA8mlLEO5PG3PWYAK5y7W83gDvxC4x40WlsGAYaDwAAnCe2iH9/f4HP/M9///fREw6f/9HT5k/+6CUL4fU+TXQas9YqpS7fHwAAcpRZGvs0XX30/OmnEWls/sVfmGkL+aYxa60QYhiGT1+otTbGzB/p+/66/bqDf4fzKudNtYyvK8fvZeUAPyuzNDb+Oyr957//W//zPHn0Jq31k0N82iu2rm7zkc3c9ihN00gphRBVVS2i1aGyLOetSNM0EZHu0DAM1tovNVfGmL0tZ1fOm2oZU5Tjl6pYABl5RBoL70aai+sY23vVYS/aZvLzZ8FNi3I2K72252wYBq11VVVSSill13UnN3h+f4qimL7tuq6u68v/l77vtdZCiO/VuznYmmk5b6plvLccv1TFAsjLU9JYyLebHV0fdYytv/Y8eHKS2V6m3KzOcwROprFhGKSU01/PVVVZa89s8Dxr7fxe40qpLzVUXdd99VoBpVTbtusHcyznTbWMt5fjl6RYAHnJKY2NR91d60HMzVftbWctJJB50tjmt5tJ63tprK7reX+AtTZ535jWekqEi36yaxljyrL80sbd9rXW80fyLedNtYy3l3O4MzcXCyA7maWxhUXe2vx2b4ByL8PtPW1cdcXtvcRfxWY530tjSqn7R2f8yrKc5u4YY6LHWay1/tK01iGt1OF29nRdt2jgo8sJ2YfAcuJcWEuIjN6aQw/8HALITn5pbG+Mcj1Y+enX629DnnOyb2xzQPPCNFZVVVEUyfvDJsMwzPsJ9hqqpmm01lLKsiz3dv6w9ZJSussLtNZFUewN0Ya0gnVdSymLophfr+BWTZvPCo8uJ2QfAssJsS7nwlpCPOet8cv0cwggO09JY+Gz+MOz1OYzA6+p9LgwjR0+ee/54fq+L8tSCOGfNONO8WsnuxO6rlu0PdbaeaO42XU3DWX2fe+ZcHPYegkh2rY1xrjJc3tPDmlN3f5YaxdXjy5mZ0eXE9ISB5ZzaK+cq2oJ8ZC3xi/fzyGA7DwljQV+6w9Y/jR2eM1j4HpjgfP9A2fxbz7oSWPreBrCzVwRQjRN8+lr4/R9X9e1i3Tzx7XW8xnHUsrFLnVdN0VA/yKx/tbLtaDTxquq2qvdv52maTz74Bra6dvocg5b4vBy/DzlXFXLoYe8NX5Zfw4BZOcNaWycDV/OX/jR+mHh68QGTkHby0zrx/2jk5ekMUcpdcn8kpCb5bmrOJumEULM/45fTGdWSi0ap/lVn+v+jL7v5113Qojp60VrtFiZtizLeS9d+HYWL1wfikUHTHg54fsQUo7csegy8ZRzppaP9uEJb83h3mb9OQSQnZzS2Dowxc0bO/zW8+Di/108OWK9sXFrENMzULu5hT2LqSTGmEvS2EeEEFMCcyM185+uZ/NMTZcxxv8Xv78voa7raR0N/20x/dvxt3NCiPnam9HlHPaNhZfj5ynnqloOPeSt8cv6cwggOxmnsbXwvjHPlZKebOcf7jwcCV2Us/52b6a/5+V+i6GNpmnmC33NfWne2DiOdV0LIdyf9caYRXuzGH+ZliHous61gp65yf7Wa94X4m+JPdtxw0x77dx6Hanocg7TWHg5Hp5yLqzl0BPeGr/cP4cAsvOI3+GPZvFv2kxC/r60kB0LfFrg89flfDrm+Onz54NEbmgmyW1hpu6xqqoWf9+7kZrpW9euuEnK7pbkngXS/K1gWZbup13X+Qv3bMftvGtN27ZdjNwZYxbpNrqcwzQWXo6Hp5wLazn0hLfGL/fPIYDsPCKN4Uu6rivLUimlta7r+ktRbN08LLjusbZtN9fAXNyzsizLqdXx38fJ3wq6YVlXu7/ww5EmIcS0SMHc5o0N4so5TGPh5fjtlXNhLYce8tb45f45BJAX0hhOcWMo/jGgqXts82nW2tuu9LzWYg6ck2k5b6plfF05fpvFAsgLaQynaK2VUoczctyNk/fawhzv62Kt3ZvZnV1seC6AAAAPlUlEQVQ5b6plfF05fp5iAWSENIZ4bk3LkDTmn4Y8DEN21+d7msDsynlTLePryvEjigHvQBpDPNfTEJLGxjd2SwAAcAnSGCIZY1w3Q2AaAwAAm0hjiDEMw9TXRRoDAOAM0hhizNfLII0BAHAGaQwfc1Py1165fAAAAN9GGkOMfkYpJaXs+/7+hf4BAHgB0hjOYqQSAIAzSGOIZ4xxy7oKIbTWLH0EAEAE0hgAAEBKpDEAAICUSGMAAAApkcYAAABSIo0BAACkRBoDAABIiTQGAACQEmkMAAAgJdIYAABASqQxAACAlEhjAAAAKZHGAAAAUiKNAQAApEQaAwAASIk0BgAAkFL2aazruqqqUu8FgMvwSw3g12Scxvq+r+taKSVExlUAmPBLDeA3ZX/Ka9uWEzfwJvxSA/g12Z/yOHEDL8MvNYBfk/0pjxM38DL8UgP4Ndmf8jhxAy/DLzWAX5P9KY8TN/Ay/FID+DXZn/LOnLjdpVsArpL8lxoAcpT9KS/6xD0MA2d84IFIYwB+TfanvOgTt7VWKXX5/gA4iTQG4Ndkf8qz1gohhmH49IVaa2PM/JG+76/brzv4dzivct5Uy/i6cvwuLyf6l/pL+/Nt2e0wgMs9MY39/f39/f2FPLNpGimlEKKqqkW0OlSW5fwk2DRN9NnfYxgGa+2XzrbGmL0tZ1fOm2oZU5Tjl6rYCGd+qcfXfVoA/Ii801i0YRiKopi+7bquruvL/5e+77XWQoiu6y7fuLM52JppOW+qZby3HL9Uxd7vZZ8WAL/jiWnsBtba+W2JlVJfOs92XffVGTBKqbZt1w/mWM6bahlvL8cvSbH3e9mnBcDv+NE0prW21rqvF/1k1zLGlGX5pY277Wut54/kW86bahlvL+dwZ24u9n4v+7QA+Ck/msbKspwmlxhjoocJrLX+kRGtdchJ9nA7e7quW7RATygnzrW1HMrrrfF74Ofwfg/55McdwyccQAAJ/WIaG4Zh/mfu3nm2aRqttZSyLMu94Y/DM6+U0s1E1loXRTF1yH26nXEc67qWUhZFMZ/a7FZNm09bfkI5IdblXFvLoee8NX6Zfg6/xxjjphkYY+b78JBPftwxvPMAAnig96exrusWp05r7fysrZRanz2nocy+7z3zRQ7PvEKItm2NMcMwSCn3nhzSGLj9sdYuLjRbTC5+QjmH9sq5sJZDD3lr/PL9HE7PL7ZEd2K5HKOUckOHTdNMP3rIJz/6GH71KgEAD/fmNNb3fV3X7uw/f1xrPZ8wK6Wcn9PHcey6bmot/IvE+s+8rgGYNl5V1eI/CtxO0zSefXDtxPTtE8rx85RzYS1+D3lr/LL+HH7JMAxa66qq1r1TD/nkRx/Dew4ggGd6ShrbW9Vi7/GQm+W5JXyaphFCzP8GXczGVUotzq3zc/36D+6+7+d/5Qshpq8XJ9PFIpZlWc6bkPDtLF64PhSLDphU5cgdi7/4PeWcryVwH57w1hzubdafwwiBd8BUSkkp1y9P9cn/aFPhH34APyXXNPYRIcSUwNxAw/yn6+km05nXGOP/g9X/d3Bd19M6Gv7bYvq34z9NCyHmS0c+oRw/TzkX1uL3kLfGL+vP4fcUO9O2HvLJjz6Gtx1AAA/0lDT2VXVdCyHcGdwYszhXLsYOpuvku65zJ3HP1Fr/mXf+x7q/JfZsx42S7J2m18sgPaEcD08519bi94S3xi/3z6Fz+bwxz2z3h3zy447ht9czA/BwP/H7787grnusqqrF36ZulGH61p0W3QRbd/dia23cpVhlWbqfdl0npYxrDNzOu8agbdvFWMx0fdmjyvHwlHNtLX5PeGv8cv8cfom1du8YPuSTH3cMbzuAAJ7pJWls3TwsuO6xtm03l3Bc3LNyularbdv1lKM5/0ncGOO6AbTW0Wfwaeena+znNqczJy/Hb6+ca2vxe8hb45f75zCOSzzuz6f1Nt0U/r3XPuGTH3cMLzyAAHL0hjTm+v/9Yx9T99jm06y1cZcHJrc5nTnTct5Uy/i6cvw2i43g1gK01rr8tJ5l5c+y+R7eqw4ggEy9IY1prZVShzNR3H1/907WOd6WxDVamz/Krpw31TK+rhw/T7GfMsZM8cv9BRWxQtsle3KnCw8ggExln8bckowhacw/DXkYhuwuL/ecwbMr5021jK8rx+/CJLEYByzL8tN0lePhJYoByD6NuZN1SBob8/y7GfhZxb/vvwQAb5V3GpvGNQLTGIBccCNtAL8j4zTm7pHiviaNAS+jlGIID8CPyDiN1XU9zTIhjQFv0jRN9D3pASA7uaYxNyV/LdPr2wFM5nf7BoBfkGsaG8exn3E3Eu77/syqpACSc3eS5RcZwE/JOI3NMVIJvIO7DZG11t3USCnFvbQBvF72acwY45Z1FUJorZn2C+Srqqpp1kFRFFrr7BYPA4AI2acxAACArJHGAAAAUiKNAQAApEQaAwAASIk0BgAAkBJpDAAAICXSGAAAQEqkMQAAgJRIYwAAACmRxgAAAFIijQEAAKREGgMAAEiJNAYAAJASaQwAACAl0hgAAEBKpLH0pJQCeJLUvxMA8Fs47SbWdV1Zlqn3AgAAJEMaS8wYU1VV6r0AAADJkMYSq+u6aZrUewEAAJIhjSWmlGrbNvVeAACAZEhjiRVFMQzD+vG+7y//v4ZhsNZ+Y8v+beZVy5iiHL+ExQIAbkAai9d13ckpX8MwbF6/1jTNZkQ7o+97rbUQouu6a7c8jqMxZq9Rz66W8fZy/BIWCwC4B2ksRt/3dV0rpU6uBdC2rZRy8WDXdXVdn9nsnq7rvrd4gVJq83/MsZbx9nL8khQLALgNaSxe27Yn28imabTWiweVUt/rBfneahqbE+AyrWW8vRy/JMUCAG5DGot3Po1VVWWMmT8yDENRFBGbstYedttordfh7yrGmMXGo2sJEVhLyGHZdGc5hzt5f7EAgDuRxuKdT2NlWS76Wowxm8NGrhdNSrl+iRPSEkspXfjTWhdFYa2N3vO6rqWURVFMabLrukVYia4lRGAtIYdlXcv4STl+IcUe7uT9xQIA7kQai3c+jQkhFlPCN3tBtNauAe77fu9/DGmJhRBt2xpjhmGQUkZPgZJSuv2x1k6NursiYV5OdC0hAmsJCTrrWsLL8Qss9nAn7y8WAHAn0li8k2ms7/t1h4RSatGgdl03dclYa/e6Zw5bYhcIppVmq6qKW3W2aZq9fVhc9xddy6HwWvyHxVPLGFCOX3ix/p1MUiwA4E5PSWN/f3+fPvlvy9d2cMPJNLbZQkspF21tVVXTyNQiELg8NxFCTF+vJ2Vba+f9H2VZzge8+r6XOxaN9OKFc64LJ66Wj/bhsJbAw+Kp5bCcw709LDZwJ5MUCwC404PS2DxOeTLW/Dnrjdywq5OTaayu63VPhlJqkWCmltgY42kyD/vG6rqeVkfbW+cshKcTZd2ZFFfLofBa/IfF3yF0WI5feLH+nUxSLADgTo9IY5sBy//gmH/fmFJq3VexmJw0XcfXdZ1r1Pcm9xymsXmYiL640o2a7S0WuvhRdC2HwmvxHBZ/LeNROX4fFet/75IUCwC4U/o0ttfXtX588UXyvrHFENKniqJYt3+LyT1u2U8359qFP2tt3DWVZVm6J3RdJ6WM223XN+PCQdu2876i9Qql0bUcCq/Fc1g8tYSU4/dRsf73LkmxAIA7PeIUvO7fWgxZrp+/ftXNfWNN00gphRDrNcNC7A05raf2l2U5NaLrGVSTwzRmjCmKQimltT5z9Vxd10KIac2F+fYX94mKruVQeC2Hg4CbtYxh5fiFF+vfySTFAgDu9JQ0Nm71eG2mq5s7wL6kbdu91dXLssxxzGg+aX2SaS3j68rx2ywWAHCbh6Yxz1jk3kz/++eNndE0zV5vhLU2bu2JtNY33ByzrWV8XTl+m8UCAG7zlDS2HqlcZ6y9iDb/aS78y31ld5saa+3eNYPZ1TK+rhw/T7EAgHs8JY2N/54NNn9878l7Nv+LaWaMMSZimtflpJSeJnAYhryWG3hTLePryvEjigFAck9MY4vHN58c/vj4z735lFLGmGlu9Zy7c99a9GLxh1hQAAAAOE9JY4fmT158sfnt3DAMWuvnTFU+eYtGAADwJo/IBNF9Y4dPniilrpqqLLzmz7TWlmW5eZOizZ3xbxm4wSW/IwCAjzzi5PvtkcpxHIuiuLNjzC2wWVWVEGJ97WRd1++bDA4AAOKkT2OL+BWRxvzz98d/llr1rJz5pXljbkRy3d/gZrCd2TIAAHiN9GnsBtbaj1ZRv5Bbr3/RLVcUBReyXWsYBmstF0YAAHL0E2nMTeG/dpvupoFCiLIsPWOg7o7R8z62w446fKrve621EOJla08AAH7ET6Sxy7tMhmFwIczdgtCfA9xg5RS/uq5L1VH3Ytz3GgCQLxqwGMaYKX65vi7P3ZrdXP5pkTNjzPeWMftZbiW51HsBAEAM0liMxThjWZaeayTbthVCTEtaaK090Q2brLX+g6a1DrlM9XA7AADcjzR2gaIo/NdIFkUh/ll8X0rJBZVzTdNoraWUZVnuDfgepqjpqGqtPauZBKYxd/OGw7cVAIBLkMbOCpkHVtf1NJrJZPM5rbVLTv77ExymKCFE27bGmGEYpJR7Tw5JY1JKt0vWWtIYAOAGpLGzlFKHy1W4qFEUBfdEmuu6bppCZ631TKfzpyh3VKeZeVVVrW9FGrKdcRybpmFWHwDgZiSDU5qmCZyH5C691Foz2Xwyv3OoUmpxJPu+n6/E6+Kss4i/1tr5VauLNUfCt7N+LQAANyCNxZt37RxqmsYtdXH5ymf5miKUW5XN08Xo79Oq63o6qu4S17jtjIwjAwBSII1FcvOTwhdxdSnBvxbGTxmGwc2367rOpTHPwfSnKKXUNDTpv7gyZMSTBf0BADcjjUUqy7Kua2utm+utlDpsxZVS67sk/Sy3Xqs7em4REGtt3DWV7r0Y/7lBQnSqc4nZBTt33/cP6gEAIBZpLIZb0NUpikJrHTK85aY30fUyKctyij5SSs8x9KcoY4y7xbvW2t9beThS6a5+ZRUSAMCdSGO34p5IAABggTR2K3pcAADAAmkMAAAgJdIYAABASqQxAACAlEhjAAAAKZHGAAAAUiKNAQAApEQaAwAASIk0BgAAkBJpDAAAICXSGAAAQEqkMQAAgJRIYwAAACmRxgAAAFIijQEAAKREGgMAAEiJNAYAAJASaQwAACAl0hgAAEBKpDEAAICUSGMAAAApkcYAAABSIo0BAACkRBoDAABIiTQGAACQEmkMAAAgJdIYAABASqQxAACAlEhjAAAAKZHGAAAAUvo/XFJkPB03jCUAAAAASUVORK5CYII=" alt="" width="705" height="470" />
#include<stdio.h>
#include<iostream>
#include<string.h>
#include <stdlib.h>
#include<math.h>
#include<algorithm>
using namespace std;
const double pi = 3.141592653589793;
const double esp = 1e-;
struct Point{
double x,y;
}p[];
double dis(Point a,Point b){
return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
int main()
{
while(scanf("%lf%lf%lf%lf%lf%lf",&p[].x,&p[].y,&p[].x,&p[].y,&p[].x,&p[].y)!=EOF){
double a = sqrt(dis(p[],p[]));
double b = sqrt(dis(p[],p[]));
double c = sqrt(dis(p[],p[]));
double r = a*b*c/sqrt((a+b+c)*(-a+b+c)*(a-b+c)*(a+b-c));
printf("%.2lf\n",*pi*r);
}
return ;
}
- poj 1329(已知三点求外接圆方程.)
Circle Through Three Points Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 3766 Acce ...
- 2020牛客暑期多校训练营 第二场 B Boundary 计算几何 圆 已知三点求圆心
LINK:Boundary 计算几何确实是弱项 因为好多东西都不太会求 没有到很精通的地步. 做法很多,先说官方题解 其实就是枚举一个点 P 然后可以发现 再枚举一个点 然后再判断有多少个点在圆上显然 ...
- 【NX二次开发】三点画圆,三角形外心,已知三点求圆心
已知P1.P2.P3,求点O 算法:三点不在一条直线上时,通过连接任意两点,作中垂线.任意两条中垂线的交点是圆心.
- poj 2002(好题 链式hash+已知正方形两点求另外两点)
Squares Time Limit: 3500MS Memory Limit: 65536K Total Submissions: 18493 Accepted: 7124 Descript ...
- Luogu-P1027 Car的旅行路线 已知三点确定矩形 + 最短路
传送门:https://www.luogu.org/problemnew/show/P1027 题意: 图中有n个城市,每个城市有4个机场在矩形的四个顶点上.一个城市间的机场可以通过高铁通达,不同城市 ...
- [YY]已知逆序列求原序列(二分,树状数组)
在看组合数学,看到逆序列这个概念.于是YY了一道题:已知逆序列,求出原序列. 例子: 元素个数 n = 8 逆序列 a={5,3,4,0,2,1,1,0} 则有原序列 p={4,8,6,2,5,1,3 ...
- 已知段地址,求CPU寻址范围
已知段地址为0001H,仅通过变化偏移地址寻址,则CPU的寻址范围是? 物理地址 = 段地址×16 + 偏移地址 所以物理地址的范围是[16×1H+0H, 16×1H+FFFFH] 也就是[10H×1 ...
- poj 1113:Wall(计算几何,求凸包周长)
Wall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 28462 Accepted: 9498 Description ...
- POJ 2208 已知边四面体六个长度,计算体积
Pyramids Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2718 Accepted: 886 Special ...
随机推荐
- [转]juery-zTree的基本用法
[简介] zTree 是利用 jQuery 的核心代码,实现一套能完成大部分常用功能的 Tree 插件 兼容 IE.FireFox.Chrome 等浏览器 在一个页面内可同时生成多个 Tree 实例 ...
- 进程id
我们知道怎么通过fork函数创建(或者说是复制)一个进程,但是我们要怎么样操作这个被创建出来的进程呢?那就需要用到他的进程id,所以就要获取进程id,一下提供一些获取进程id的函数和其使用方法. 1) ...
- 搭建Hadoop环境(一)
我用SecureCRT作为客户端,链接虚拟机做的服务器,我用的桥接,所以把主机的一个端口映射到虚拟机22端口上去,
- Linux之JDK在线安装及配置
1.查找java相关得列表 yum -y list java*2.在线安装 yum -y install java-1.6.0-openjdk*3.查看安装目录 ls -l /usr/lib/jv ...
- .Net com组件操作excel(不建议采用Com组件操作excel)
添加"Microsoft Office 12.0 Object Library" com组件 1 using System; using System.Data; using Sy ...
- XJOI NOIP模拟题2
第一题 组合计数 分析: 从前往后一位一位的计算 先算第一位比t小的数目,再算第一位与t[1]相同,第2位比t小的个数以此类推 先预处理一个数组h,h[i]表示从1~it串与s串不同的位数 对于第i位 ...
- BZOJ 3270 博物馆 && CodeForces 113D. Museum 期望概率dp 高斯消元
大前提,把两个点的组合看成一种状态 x 两种思路 O(n^7) f[x]表示在某一个点的前提下,这个状态经过那个点的概率,用相邻的点转移状态,高斯一波就好了 O(n^6) 想象成臭气弹,这个和那个的区 ...
- taotao订单系统
taotao订单系统需求分析.注意点.代码 需要注意的地方: 1.下订单功能一定要使用关系型数据库,因为其设计到钱,而noSql数据库相比来说丢失数据的风险更大. 但是查看订单列表.查看订单详情等功能 ...
- 区间(bzoj 4653)
Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置.换句话说,就是使得存在一个 x ...
- HDU2544最短路---(Dijkstra)
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...